
Procedural Generation and Information Games
Michael Cook

School of Electronic Engineering and Computer Science
Queen Mary University of London

mike@possibilityspace.org

Abstract—Procedural generation is used to achieve a wide
variety of game design goals, and has led to the creation
of several game subgenres by injecting variance, surprise or
unpredictability into otherwise static designs. Information games
are a type of mystery game in which the player is tasked with
gathering knowledge and developing an understanding of an
event or system. Their reliance on player knowledge leaves them
vulnerable to spoilers and hard to replay. In this paper we
introduce the notion of a generative forensics game, a subgenre
of information games that challenge the player to understand the
output of a generative system, and present two examples.

Index Terms—procedural generation, information games

I. INTRODUCTION

Procedural content generation (PCG), a technique where
some game content is created by an algorithmic process, has
been used in game development for over four decades [1]
for a variety of purposes, including assisting with repetitive
or at-scale content creation processes [2], or introducing
unpredictability into a game design [3]. While this has led
to many misconceptions about the function of PCG, it has
also enabled the creation of many genre variants in which
traditionally static design elements are replaced with dynamic,
unpredictable or variable content.

PCG is often cited as a way to increase replayability;
however, many games with PCG lack replayability, while
many static games are designed to have their content replayed
repeatedly. While PCG can influence replayability, these ef-
fects are not guaranteed – PCG must be evaluated and applied
properly, like any design tool, to ensure that the game’s
systems, content and developer workflow will benefit from it.
Perhaps a better framing for the use of PCG is that it enables
new kinds of game, or changes the context in which other
game design elements are experienced. This can be through
changing the player’s relationship with the game’s systems,
or allowing the developers to work at a scale that would be
otherwise impractical. A good example of this is Spelunky, a
blend of platformer and roguelike [4]. In his book of the same
name [3], designer Derek Yu explains that the use of PCG in
Spelunky was intended to reduce the reliance on rote learning
in platformers by making levels unpredictable.

An information game is a game in which the player is tasked
with understanding a complex artefact – a past sequence of
events, a language, a physical system – by gaining knowledge
about it, drawing inferences from this knowledge, and using
this to seek out new knowledge [5]. A common theme in such

games is a sense of mystery – the quest to gain understanding
is fundamental to the game’s dramatic arc. This makes infor-
mation games more fragile to player knowledge. Players may
feel less inclined to play an information game twice; the game
is more vulnerable to spoilers than most narrative games; and
players can accidentally stumble on a solution unintentionally.

In this paper we propose a new variant subgenre of infor-
mation games we call generative forensics games, which use
simulation-based PCG to create the mystery for the player to
solve. This helps ease some of the problems mentioned above,
such as a vulnerability to spoilers, but more importantly it
opens up interesting new design possibilities related to gener-
ative design, storytelling, and player engagement with PCG
systems. Our prototypes demonstrate our early exploratory
work in the area, but have already yielded interesting responses
from players and a lot for us to reflect on as developers.

The remainder of this paper is organised as follows: in
section II we introduce information games and explain our
motivation for applying PCG to them; in section III and
section IV we describe and evaluate our two prototype gener-
ative forensics games: Nothing Beside Remains and Condition
Unknown. In section V we discuss general future directions
for the work, and then summarise in section VI.

II. BACKGROUND

A. Information Games

Information game is a term coined by developer and critic
Tom Francis. In [5] he defines an information game as follows:

An information game is a game where the goal
is to acquire information, and the way you do it
is to use information you’ve already gained and
reason about it, deduce things from it, come up with
theories and use those theories to go looking for
more information.

Francis cites Return of the Obra Dinn [6], Heaven’s Vault
[7], Her Story [8] and Outer Wilds [9] as examples of
information games. While Francis describes the label as a
category rather than a genre, other critics have suggested that
genre is a more appropriate classifier.

Information games are often highly nonlinear, allowing the
player to explore freely and acquire information at their own
pace by following leads that feel important to them. As a
result, information games often distribute knowledge thinly
across a large space, with a lot of redundancy (i.e. the same
fact can often be ascertained through many different means).

978-1-7281-4533-4/20/$31.00 ©2020 IEEE

For example, in Outer Wilds the player explores a solar
system learning about an alien race that once inhabited it
and the technology they developed. Most of the technology
is referenced at multiple locations, increasing the likelihood
that the player will find key plot beats as they explore.

The information that these games deal with is often rich and
complex, and hard for software to model or for AI to reason
about. For example, Heaven’s Vault relies on the player’s
knowledge of semiotics to help them intuit the meaning of
an alien language; while Her Story tests a player’s ability to
read body language, intonation, gaze and facial expressions
by presenting them with video of a suspect being interviewed
about a crime. This suits the nonlinear nature of information
games and their emphasis on discovery. Such games often have
very little to ‘teach’ the player in terms of mechanics, and
instead rely on everyday human abilities. However, this poses
new design challenges, as it is hard to model how much the
player has understood or worked out.

Information games have not been widely studied and have
not been the subject of PCG research to our knowledge,
perhaps because the canonical examples of the genre are
all relatively recent (the oldest cited by Francis, Her Story,
was released in 2015). However, we believe they are an
exciting area for game design research, and their emphasis
on knowledge representation, modelling and distribution also
makes it an interesting genre for artificial intelligence research.
The closest related work is perhaps Data Adventures [10]
which automatically scrapes Wikipedia to generate murder
mysteries based on real data. While we would argue that Data
Adventures does not fall directly in the category of information
games, we believe that there is a wider set of game designs,
of which information games are a subset, which it would be
valuable to classify and taxonomize in future work.

B. Environmental Storytelling

Environmental storytelling is the act of storytelling through
the design of physical spaces. Bart Stewart describes it as ‘the
art of arranging... objects available in a game world so that
they suggest a story to the player’ [11]. Although still common
in games, its overuse has led to it becoming stereotyped in
many game design circles. In particular, the use of skeletons
in various contexts has become a running joke. As game
designer Ben Esposito put it: ‘in game design, “environmental
storytelling” is the art of placing skulls near a toilet’ [12].

Some information games do not have the player inhabit a
physical space, but games which do tend to leverage environ-
mental storytelling in order to distribute information. Return of
the Obra Dinn’s death scenes are a form of environmental sto-
rytelling, where the arrangement of people and objects imply a
story, often with hidden details that need to be uncovered by
careful inspection and deduction. The use of environmental
storytelling techniques is prominent in information games
because it provides a way to reward observation, perception
and exploration, all of which are closely related to the games’
themes of knowledge acquisition and use.

C. Motivation

Procedural content generation (PCG) and related terms like
‘generative software’ are broad terms used to describe a class
of algorithms that encode a process for producing something.
Often these algorithms are designed to have a large space
of outputs, but this is not always the case. Some procedural
systems exist to automate repetitive processes at scale [13],
or to produce a single large and complex artefact from a
comparatively small amount of code [14].

When applied to games, procedural generation is often used
as a source of variation or unpredictability. This is used in
many different ways, including achieving goals in visual art
(e.g. to create convincingly natural spaces [2]) as well as
gameplay effects (e.g. Yu’s desire to avoid rote learning of
platformer levels [3]). Marketing campaigns for games that
use procedural generation often leverage the scale of their
generators as an indicator of value or quality (e.g. declaring
Borderlands 3 contained over 1 billion guns).

Our initial motivation for this work was to design games
which eschewed classical PCG aesthetics [15]. We were inter-
ested in particular in two common trends in PCG: the attitude
of treating generated content as throwaway, and the idea that
players learning how generators work is undesirable (as it
makes them predictable, undermining their role as a source
of surprise). In the first case, we were interested in what we
call small-batch PCG in which the player becomes invested
in a single generated output and is encouraged to explore and
understand it. In the latter case, we were interested in the idea
of designing a game in which the player is encouraged to learn
the PCG system’s patterns and behaviour.

As we began planning our prototypes, the connection to
information games became clearer. The idea of encouraging
the player to engage deeply with a system fits well with
the format of an information game, in which the player’s
progress is linked to their understanding of an artefact of some
kind. This both encourages engagement with a single piece of
content (for one playthrough) but also encourages the act of
understanding the generative system, by making this part of
the process of understanding and solving a mystery.

In much the same way that PCG was used to change
player experience in traditionally static genres like platformers
[4], shooters [16] and survival games [17], we intend to
investigate how PCG could change information game design,
both in terms of repeated playthroughs by the same player,
and variation of playthroughs across a community of players.

III. NOTHING BESIDE REMAINS

Nothing Beside Remains is played as a top-down, grid-based
game in the style of a roguelike, with Unicode characters
representing everything in the world, in the style of ASCII
roguelikes. We used a two-phase generation system to first
simulate a small village using an abstract model, and then
render it in the game world for the player to explore. The
village is simulated until it collapses, and the rendering process
builds a ruined version of the village that is adjusted to convey
a sense of how the village came to meet its demise. In this

section we will describe how the world is generated, and how
gameplay is structured. It can be played online in a browser1.

The following text is shown to the player before play begins:
You’ve arrived in a ruined village lost in the desert
for hundreds of years. Explore the village, see what
remains of it, and see what you can learn about the
people who lived here. What did they believe? What
caused their downfall? You may never know for sure,
but perhaps there’s a clue or two left in the sand...

NBR’s game structure is open-ended, with no evaluation or
in-game goal for the player. Instead, we invite the player to
explore as much of the world as they want, gather information,
and quit whenever they feel like they have seen enough,
in a similar approach to Her Story. While we could have
simply asked the player what they thought was the cause
of the village’s collapse, we felt that this would undermine
the broader understanding the player was developing of the
village’s history in general, not just how it ended. Judging by
feedback from players, discussed later, we believe this decision
was justified.

A. World Simulation

There are two phases to village generation: an abstract
simulation phase, and a rendering phase. This structure is
inspired by games like Dwarf Fortress which simulate their
world in the abstract and only render things explicitly that the
player encounters (e.g. events from history are not modelled in
detail). In the simulation phase we build a high-level model of
the village and simulate it until we meet one of several ending
conditions. There are two key components to the model: the
ecosystem, which models the health of various aspects of the
natural world, and society, which models the village itself.

The society model is the simpler of the two: it records
the number of people living in the village, how many are of
working age, how much food is in storage, and then some
cultural features such as what materials they crafted with, what
numbers they held to be special, what flowers they cultivated,
and (after the simulation) records the reason why the village
collapsed. The ecosystem model is slightly more complicated.
It tracks three key features: the average temperature, the
density of hostile fauna in the area, and the health of the
ecosystem (i.e. how well it can support agriculture). Each of
these features has a current value, a minimum and maximum
cap, and a cap on how much the current value can change per
simulation tick (to avoid extreme shifts).

Once these two models are initialised, we run a turn-based
simulation of the village, with each turn stepping through
the same sequence of checks. Temperature and hostile fauna
fluctuate randomly. The ecosystem then has a chance to
take damage, with the chance increasing with temperature.
If the ecosystem health reaches zero, the simulation ends.
The population goes down based on the intensity of hostile
fauna. If the population reaches zero, the simulation ends. The
population increases slightly based on the crop surplus. Crops

1cutgarnetgames.itch.io/nothing-beside-remains

then grow or shrink based on temperature and population size.
If the crops stock reaches zero, the simulation ends.

This simulation has three possible endings: ecosystem col-
lapse, overrun by predators, and famine. The parameters of
the simulation, such as the starting values for each variable
and their caps/drift rates, were set experimentally in order
to achieve an approximately equal distribution of the three
endings, which we verified by running 500 simulations and
recording the balance of outcomes, then tweaking parame-
ters to affect ending probabilities. The remaining parts of
the model, the cultural features of the society like favoured
crafting materials, are set randomly as they only impact the
final rendering the village.

B. World Rendering

Once the simulation has ended, we construct the game space
for the player to explore. We use a 100x100 grid of tiles,
which we split into 10x10 regions which we use to assign
larger features to. Then we add several features which are
always present in every generated village. The first are water
sources – we add a number of lakes to the map, the quantity
and size of which are based on final ecosystem health. Large
lakes or swamps suggest high ecosystem health at the end
of the simulation, while smaller and fewer lakes might imply
the village collapsed because the ecosystem collapsed (or was
simply close to collapse when another fate befell it).

Next, we add two features which are common to every
village: the place of worship and the statue. The statue has
collapsed into fragments. The plaque at its base, which the
player starts in front of, has an inscription describing the ruler
of the region. We procedurally generate the inscription text
(see below) and the scattering of statue pieces.

The place of worship is situated near the statue, and is a
long building taking up a 20x10 space. It is laid out somewhat
like a Christian chapel might be – there’s a large area with
rows of pews, and then an open space at the end with an altar.

After the fixed points have been added, we lay out a
path from the worship hall to the nearest water source, and
randomly add houses to the edge of the path. This forms the
‘inner’ village. Once this is complete, we add secondary roads
branching off this main road, and keep adding houses to the
roads – any spot adjacent to a road that does not contain a
building has a chance to branch off a new road. Each house
added onto these secondary roads has a chance to be a barn
or a field instead, with the chance increasing as the road gets
further from the center of town. This means that farmland
tends to be kept on the outskirts, with more houses closer to
the place of worship. We continue this process until a random
number of roads have been added, or there are no more blocks
to add roads onto.

C. Decorating Rooms

The outer structure of every building (including fields and
places of worship) are laid out next. We first lay the structure
out as it would have been originally built, and then randomly
destroy or displace parts of the structure to simulate damage

and decay. The chance of damage is related to temperature
levels, to simulate harsh weather. We also adjust visual repre-
sentation (e.g. walls become broken into small rocks). This not
only conveys one of the simulation factors visually, but also
helps convey a sense of ruin, as the player can move through
broken walls and fences to traverse the village.

After laying down the outer structure, each building is
populated with items based on its type and environmental
factors. Each building has a set of items it pulls from with
a specific probability. Houses contain items such as tables,
chairs, cutlery, children’s toys; fields contain various crops
and wild plants; both barns and fields might contain animal
skeletons. The chance of some items appearing are affected by
the simulation - children’s toys are influenced by the birth rate
and general population growth; if there are very few children’s
toys this might suggest the village ended with the population
being wiped out. Crops, and plants in general, will be less
common in fields if crops failed or the ecosystem collapsed,
while weeds will be more common. Throughout all buildings,
predator skeletons will be more common based on the hostile
fauna density. They have slightly different appearances to
cattle skeletons in-game, and different descriptions too.

D. Generating Descriptions

Any object in the game can be examined to read a descrip-
tion. Some are static, while others have generative elements.
There are two layers to our generative text system. The first is
a Tracery layer which uses standard syntax for generating text
[18]. Within these grammars are markers for a second layer
of dynamic text, which is handled by our system after Tracery
has finished generating. These markers refer to elements which
are dynamic, but consistent across all text within a particular
instance of the game.

For example, generated descriptions which want to mention
the material something is made out of will leave a dynamic
marker ‘@MATERIAL@’ in the Tracery output, which the
system will later replace with the material the village used
most for crafting. This two-phase text generation allows us
to mix dynamic elements into the procedural descriptions.
Most of these dynamic elements are decorative, but one
element in particular is very important: ‘@DREAMENGRAV-
ING@’, which describes the village’s hopes and fears, and
is specifically linked to how the village ended in ruin. This
is found in the descriptions of engravings in the worship
hall. One possible engraving is of a lush forest scene. This
means the village in this game suffered from an ecosystem
collapse. This is the only piece of information in the game
that unambiguously confirms the fate of the village, although
the player does not know this.

E. Evaluation

1) Player Feedback: By far the most satisfying outcome
from this prototype was the feedback from players. In par-
ticular, several players wrote responses to the game, some
styled as a kind of archaeological report on what they had
found. These included descriptions of the village they had

explored, as well as theories about the inhabitants. One player
wrote: “The evidence isn’t conclusive, but it appears that this
village lost its ability to grow crops through a change in the
environment, with water drying up and plants dying off.”

Of course, it is hard for us to know whether this player’s
assessment was accurate, or if they simply misinterpreted the
amount of water remaining. This is one of the motivations
for advising players to only play the game once, because it
stops them from being able to resample the generator and
learn what the limits are on the generator’s variation. Instead
of seeing many villages and learning what the biggest and
smallest lakes are, the player is instead forced to relate features
such as the size of a lake to real-world analogues, as they
have nothing else to compare it to. We believed this would
encourage players to engage more deeply with the world,
despite it being procedurally generated.

A second side effect of asking the players to only play
once is that they are unable to gauge which parts of the
world are simulated and which are static. For example, the
same player remarked that “religion was likely a daily part
of their lives, as several houses had altars with offerings
of perfume”. However, repeated playthroughs of the game
would reveal that perfume always occurs inside houses with
the same probability. Interestingly, some features that were
dynamic between playthroughs can appear less meaningful
when the game is only experienced once. Each society has
a sacred number, and one way this manifests is in the design
of chairs, which always have a sacred number of legs. One
player reported: “One quirk that I found particularly amusing
was the number of three legged seats, I think just about every
stool or chair I encountered was missing exactly one leg”.
Three legs did not seem significant, and in fact seemed strange
or arbitrary. Another player encountered a different sacred
number, which was more of an outlier, and interpreted it more
accurately: “Chairs typically had seven legs, which almost
certainly means that the number seven had cultural, probably
religious, significance for the villagers.” Of course, the nature
of history and archaeology means theories cannot always be
proven ‘right’ and thus the idea that these chairs were simply
missing a leg is a valid hypothesis. What is interesting here
is that because only one village was explored by each player,
a dynamic feature was interpreted very differently by each
player, leading to completely different interpretations.

2) Abstract Simulation: Abstract or high-level simulations
scale better than detailed simulations, and can be simulated
faster. Even with abstracted simulation, generating a world
in Dwarf Fortress can take many minutes. Even though our
prototype is small by comparison, the approach will scale
well to larger simulations. Abstraction makes sense in many
generative contexts because the player is mostly concerned
with the end result of the simulation. Although the history of
a generated world in Dwarf Fortress can have relevance and
interest to the player, most of the fine details do not impact
the player’s objectives (for example, the path through a village
a farmer took eight hundred years ago to fetch water).

Although abstract simulations have their benefits, we feel

that for information games they have a significant drawback,
namely that the rendering has too indirect a relationship to the
simulation. A simulation in NBR effectively defines a space of
renderings, which is sampled by the generator in the rendering
step. The problem is that the process of generating a rendering
makes decisions about the world that do not have a basis or
justification in the simulation. For example, the number of
farms, their position relative to the water sources, and the
quantity of houses have no relationship to the population of the
village or its food stocks. However, as discussed in previous
sections, information games encourage the player to interpret
the environment they explore, which means players end up
drawing conclusions that the simulation cannot back up.

For an aesthetic or tonal piece, this is necessarily a disadvan-
tage, and in fact seems to have helped some players get a lot
more out of the game. One player commented on the presence
of a trident in the statue, wondering if it related to a past
as a fishing village, while another hypothesised that the area
was underwater at one point. These colourful interpretations
of extremely small details are encouraging, and as an open-
ended exploration game with a creative writing twist we find
it to be quite effective. However, for information games that
attempt to validate the player’s knowledge (for instance, if we
had asked the player to infer the fate of the village) it might
be frustrating to have so much information be disconnected
from the game’s model of what happened.

We believe that abstract simulations can work for generative
forensics games, as long as the player is not rigorously
evaluated on their understanding of the system. A game with
the structure of Elegy for a Dead World [19], for example,
where players are encouraged to complete creative writing
tasks in response to exploring worlds, would be an excellent
way to incorporate a personal response to a space generated
in this way. However if the player was expected to build on
and be motivated by their knowledge (as Francis suggests in
his proposal of the term information game) then this approach
leaves too many loose ends that the game cannot tie up.

IV. CONDITION UNKNOWN

Condition Unknown (CU) is a second generative forensics
prototype, developed one year after Nothing Beside Remains.
After reflecting on the response to Nothing Beside Remains,
we decided to explore a different approach to generative foren-
sics, this time working with a much more detailed simulation,
and setting the player a simple goal. In CU we use an agent-
based simulation to model a science-fiction story about a
catastrophe at a research station. The player arrives after the
event, and is tasked with identifying the station crew and
recording their fates, inspired by Return of the Obra Dinn.

The following text is shown to the player before play begins:

You’ve arrived on the outskirts of a remote research
station that was excavating an unusual find, deep
into the Arctic wastes of this planet. Explore the
station, discover what happened, and document the
fate of the crew that lived there.

The player does not have to perform this task, and can
simply explore the station to piece together the story, much
like NBR. However, if they wish to they can identify causes
of death and submit a final report, which ends the game. The
player is then told how many of their responses were correct.
In this way, CU experiments with a more objective-focused
approach to information games, closer to Return of the Obra
Dinn than Her Story. As with NBR, there are no combat
encounters or challenges, other than the optional challenge to
identify crew deaths. CU can be played online in a browser2.

A. World Simulation

Simulations in CU vary in details, but have the same core
structure and premise. A research station is attacked by an
‘anomaly’ during experimentation. The crew try to fight it or
escape, but all of them fail and are eventually killed somehow.
World generation has two phases: a construction phase where
we set up the initial conditions for the simulation, and a
simulation phase which begins at the point the anomaly attacks
and stops when everyone in the station is dead.

1) Construction Phase: In this phase we build the basic
structure of the research station, place all characters in their
starting locations, and check initial conditions. First we place a
random number of corridors down, all connected to each other,
and then we place a random number of rooms attached to
the corridors. We then assign room types: the most important
room is the station entrance, which is always the southernmost
room, and is the only room that starts with an exit door into
the outside world. Other room types are assigned randomly.
There is always exactly one of the following rooms: Mess Hall,
Residences, Laboratory and Security Office. All remaining
rooms become secondary laboratories.

We then assign scenery to each room. Whereas NBR had
a flat chance to place scenery in any space, in CU we use
grammars to ensure we place scenery in patterns that make
more sense. For example, a desk will have a chair in front
of it. A custom scenery placement system loops through the
room, placing certain kinds of scenery down depending on
room type, the available space and whether or not it will be
adjacent to a wall or doorway. We ensure scenery is never
placed in front of a doorway, and every pattern leaves a 1-
tile gap around it to guarantee that the entire station remains
walkable. This was less important in NBR because the player
did not need to explore everywhere, but in CU navigation
is vital both for the player to discover clues, and for crew
members to have free movement during the simulation.

Between five and six characters are then generated. Their
two main properties are their name – drawn from a pool of 15
hand-authored names – and their profession. There is always
one Security Officer, one Logistics Officer, and the remaining
staff are all Scientists. We place characters in the station based
on their job: scientists start in one of the labs, security guards
always start in the security station, and logistics officers always
start in the mess hall. Their profession affects their description,

2cutgarnetgames.itch.io/condition-unknown

which helps the player identify bodies later. Finally, we add the
last character, the creature attacking the lab. This is referred
to in the project as ‘the anomaly’. The anomaly always begins
the simulation in Lab #1.

2) Simulation Phase: Once the world has been constructed,
we begin simulating the events that led to the destruction of
the station. This is done using a turn-based system in which
the station staff, the anomaly and any dynamic objects all take
turns. Dynamic objects are non-intelligent entities such as fire,
which has a percentage chance to spread to nearby tiles, as
well as a chance to extinguish by burning out. Dynamic objects
also respond to events, such as fuel barrels exploding if shot,
or walls being destroyed by explosions.

The anomaly’s AI system is the next simplest. The anomaly
moves towards any human it is targeting, as long as it can
see it still. If it has no target and sees a new person, it will
chase them instead. Finally, if someone attacks it, it will turn
and target them. If the anomaly begins its turn adjacent to a
human, it will kill them (they combust, the cause of death is
burning). If too much time has passed since it saw a target,
we simply provide the anomaly with the location of a random
crew member (we discuss this later). It also has a small chance
to set the tile it is on on fire, and will set fire to a larger number
of nearby tiles if it is shot.

The station crew have the most complex AI. The AI uses a
priority-based series of checks to respond to events based on
their severity, as well as the current state the crew member is in
(what they are doing, what other things are happening to them,
and so on). For example, seeing a dead body is a high priority
event that will trigger a response and make them stop what
they are doing. However, if they are already doing something
urgent (such as fleeing the station) they may not regard the
event as being as important. Events can be triggered by what
the crew member sees (e.g. fires, dead bodies, anomalies),
hears (e.g. explosions, screams, gunshots) or knows (e.g. has
been told about the anomaly, has been told someone has died).

We do not have space here to exhaustively describe the
web of priorities and events, however we can provide an
overview by talking about the narrative structure the crew’s AI
was designed to tend towards. Although the initial conditions
and the simulation itself are fairly unconstrained, we designed
the AI systems with two important ‘points of no return’ that
function as barriers between different acts in the narrative.
These acts are not explicitly defined in the code, but are useful
abstractions for dividing the system into different phases.
Broadly speaking, these acts are:

• 1. Opening: no-one is alerted, crew working as normal.
• 2. Panic: station is alerted, crew seeking shelter or fleeing.
• 3. Climax: crew formulate a plan to resolve the situation.
The transition from the first to the second act is not uniform

– crew members transition at different times depending on
how knowledge of the anomaly spreads through the station.
Each crew member has a panic level that is increased by
witnessing or being told about certain events. Seeing a fire
is a cause for concern and will cause the crew member to
seek shelter in another room, for example, but it does not tell

them specifically about the anomaly. If their panic reaches a
certain level, they will attempt to find a safe place to meet up
with other crew members. There are two event sequences that
commonly occur to bring the entire station to full alert: the first
is a crew member witnessing the anomaly and surviving long
enough to radio their sighting in to the station. The second
is the crew hearing something suspicious, at which point the
security officer will go to investigate, which leads to them
witnessing the anomaly and alerting the station.

Once the station is alerted, crew members run to rooms far
away from reported danger. There are many events that can
trigger here, because movement often triggers new sightings of
other dangers, including dead bodies, and they can also meet
living crew members too. In addition to this, because the crew
members have imperfect information they may attempt to flee
to locations which are dangerous – for example, fleeing a fire
and running into a room with the anomaly. We prevent the
crew from leaving the station by having it set in an inhospitable
environment. This means that over time safe areas become
smaller, and the anomaly will eventually track down crew
members if it does not encounter them naturally. The transition
to the third act is fixed, and always triggers when there are
only two crew members left.

During the third act, remaining crew members pick from a
set of ‘endgame’ plans for how they intend to kill the anomaly
or escape. There are two possible endgames currently in CU:
in one, they raid the security office for weapons and confront
the anomaly; in the second, they run outside and attempt to
flee the station. Both plans are guaranteed to result in their
death. If any crew member spends more than five turns outside
the station they die of exposure, and the anomaly cannot be
killed so confronting it will result in it attacking them. When
all crew members are dead, the simulation terminates, and the
anomaly is removed from the game.

3) Message Passing: Although the final state of the station
does impart some information about what happened to the
crew, it is not enough to identify the crew, and chronology in
particular becomes difficult to put together because events may
overlap (for example, fire may spread through an area twice).
To provide additional information to the player, as well as to
convey a sense of a real sequence of events taking place, the
crew’s AI doubles as a messaging system in which they radio
each other with reports about events and actions. After the
simulation is complete, every recorded message is assigned to
a terminal – a special world object that appears all over the
station. We place one message in each station, with the most
chronologically early messages placed nearest the entrance,
and then later messages being placed in terminals deeper into
the station. This is a simple attempt to stagger ‘exposition’
so that later messages are found as the player sees more and
more of the station’s destruction.

Messages fulfil several roles in the design. Most obviously,
they contribute to the tone or atmosphere in some way, adding
small details to the narrative. We partition the information
content of the messages into three types: reports, intentions
and updates. Reports describe an event that a character has

witnessed, such as finding a dead body. Intentions describe
what a character plans to do next, such as going to a particular
room to find shelter. Updates are a special kind of message
where we force two characters to exchange information some-
what artificially in order to help fill in gaps in the player’s
knowledge later. For example, when a lot of action is occurring
at one end of the station, characters in the safe end may
have no reason to send messages about their whereabouts.
To balance this, characters sometimes mention their location
when in dialogue with other characters, usually in the form of
a simple ‘Where are you now?’ query or a ‘I’m in ¡location¿,
get to us if you can!’ request as part of another update.

Every message, regardless of its content, is also marked with
a timestamp and the name of the person sending the message
(some messages also include responses from other people,
but we only explicitly provide the first person’s name). The
timestamp is calculated as an offset in minutes from a random
start time, based on the number of turns that have elapsed. As
an example, if the random start time is 10:41 am, a message
sent on turn 10 will have the timestamp 10:51 am. This
allows the player to put messages in context, and also allows
important deductions to be made about the state of certain crew
members. In this way, even a message that contains no useful
content in its message still conveys important information, in
that it confirms the sender of the message was alive at the
given timestamp.

B. Evaluation

1) Player Feedback: NBR’s presentation to the player
emphasised exploration and discovery, even framing the player
as a historian or archaeologist of sorts. There was no explicit
objective, and we instructed the player to explore at their
own pace and quit when satisfied. With CU we gave similar
instructions, but also provided an optional task. In addition
to this, the game is built around a more specific event in a
shorter time period, with less ambiguity and more first-hand
information to read. As a result, we found that response from
players was less creatively interpretive than before, and more
focused on the task. Many players reported their success rate
on the final task to us, but none retold the story of their
playthrough, or attempted to retell the events that took place
in their station. In both cases our playerbase is small – at
the time of writing, CU has had 500 players in three months,
while NBR has had 1,000 players in a year – but we suspect
the more task-focused nature of CU is an important factor in
the changed response.

General feedback to CU was positive. Although we recom-
mended to players that they did not replay the game, many
reported that they enjoyed doing so, and felt that it was more
enjoyable to replay compared to NBR because the purpose
of the game was to understand the generator, and effectively
become more skilled at investigating and solving mysteries.
However, another player noted: “on the second playthrough...
having figured out the clockwork of [the generator], the
task seem[ed] much more mathematical”. This matches our
expectation that players rapidly adapt and understand what

the generator is responsible for, but it seems players differ in
how much this bothers them.

2) Robustness of Deep Simulation: Although one might
assume that finer-grained simulation would lead to less flex-
ibility, we found that due to the specific design of CU our
simulation was very robust to certain kinds of failure. When
developing agent AI for characters the player can see, it’s
important to ensure the AI does not do anything that would
break the illusion of being a real thinking, feeling human
being. However, in generative forensics games the player only
sees the end result of the simulation, and all other information
they glean is information we have chosen to release. This
allows us to develop AI agents which are more loosely
specified and that make mistakes, as long as those mistakes
don’t affect the integrity of the information left behind.

For example, the exact route a character takes from one
room to another in CU is not seen by the player. We use basic
A* to path between locations, which means characters often
take more dangerous routes because they are more optimal
in terms of distance travelled. Although we forbid A* to
path through tiles which are on fire, we don’t discount tiles
adjacent to fire, which are dangerous as they may catch fire
when the character is on them. This leads to characters dying
unnecessarily in fires. If the player were able to see the precise
route they took, this would make the characters seem less
intelligent, less human and less engaging. However, in CU the
player only learns about this event through what we choose
to report: the character might report they are leaving to move
through the facility; another character may report seeing their
body; and the player can discover the character’s final resting
place. At no point is the player exposed to the problems with
their pathing algorithm.

This can be seen as an invitation to write worse AI, but
in fact it should really be seen as an opportunity to write
better AI. This design structure allows us to vary our focus
and level of detail in our agents, meaning we can put extra
effort into writing AI to handle social situations or knowledge
representation, and worry less about the exact strategy an agent
uses when fighting a monster or pathing through a burning
building (since the player will only learn about the event’s
outcome). This gives us a chance to focus on different things,
and gloss over the rest with good writing and presentation.
This is similar to the idea of story sifting introduced by Ryan
in [20], but rather than identifying potential story templates
in a trace of events, instead we simply choose not to report
events which do not contribute to the story (in the case of CU
this is baked into the system, rather than being a decision an
AI narrative manager must make on-the-fly).

V. FUTURE WORK

Both of our prototypes led to useful feedback and raised
more questions about what generative forensics can do for
game design and how these games can be best designed. Many
points of future work exist, but we outline a few prominent
lines of inquiry here.

1) Knowledge Guarantees: We explicitly avoid trying to
reason about whether Condition Unknown’s core mystery
is solvable at generation time, although it would be fairly
straightforward to do so. There are many procedural generators
which try to make firm guarantees about their output, many of
which involve ensuring there is a valid solution to a problem.
We decided not to do this for our prototypes: we wanted each
output to not necessarily be solvable, to encourage players to
consider when they have exhausted all avenues of investiga-
tion, and to reflect the fact that sometimes investigations or
archaeological surveys do not yield answers.

However, this is a departure from traditional information
games. Many allow the player to end the game without
understanding everything, but all of them guarantee that the
truth can be known if the player explores and understands
enough (with the possible exception of Her Story which
maintains an element of ambiguity for some plot points).
We believe that games which do not guarantee a solution
are interesting and valuable, but it is also worth exploring
how we can build generative forensics games that guarantee
solvability too. This might initially involve quite clumsy
solutions, for example by hiding unambiguous details in every
station in Condition Unknown. It might also be possible to
write solvers or reasoning systems to play the game, but this
might encourage the games to move further towards more
easily-modelled knowledge, which arguably departs from the
spirit of information games.

2) Alternative Evaluations: Information games usually ei-
ther do not evaluate player knowledge, or do so in a fairly
strict, unambiguous manner. However, we were struck by
player responses to Nothing Beside Remains, and how per-
forming a creative act in response to gameplay (in this case,
writing a report on their findings) seemed to spur a deeper
engagement with the game, as well as encouraging a different
response than games normally ask of the player. A similar
experience can be found in Elegy for a Dead World [19] in
which the player completes creative writing tasks in response
to exploring hand-designed planets.

Incorporating creative writing tasks as part of the explicit
response to the game is an interesting design extension that
embraces the unpredictable and varied nature of generative
forensics games. Although the game itself cannot understand
or respond to such work, we envisage a meta-level commu-
nity of players who write reports on their experiences, and
collectively gain a better understanding of how the generator
works simply by reading the reports written by other players.
This would be an interesting way to encourage community
discussion about the game, and would also add the potential
to explore social game design ideas as espoused by designers
like Dan Cook and Tanya Short [21], [22].

VI. CONCLUSIONS

In this paper we examined ‘information games’, in which
players solve a mystery through exploration, understanding
and reasoning, and suggested a new class of game, ‘generative
forensics games’, in which the player tries to understand the

output of a generative system. We described two prototypes
that explore this idea from different perspectives, Nothing
Beside Remains and Condition Unknown. We motivated and
described their design, discussed preliminary player feedback,
and pointed to future considerations for the genre.

Procedural generation is often seen as a way to obtain
‘more unpredictable stuff’ [23], but as a design tool it has
many different uses, and combining it with unfamiliar design
structures can be enlightening and entertaining. We believe
generative forensics games are a promising design space to
explore, and may also point to a need for better tools to help
designers work with generative systems [24]. Being able to
use generative systems as a natural part of the design process,
as one might with a physics system or a dialogue tree, is
necessary to open up this design space to more people.

VII. ACKNOWLEDGEMENTS

Thanks to Andrew Dunn for naming Condition Unknown,
and to Tom Francis for discussions about information games.
This research was funded by the Royal Academy of Engineer-
ing Research Fellowship scheme.

REFERENCES

[1] N. Shaker, J. Togelius, and M. J. Nelson, Procedural Content Generation
in Games. Springer, 2016.

[2] SpeedTree, “Speedtree, open research content archive (orca),” 2017.
[Online]. Available: http://developer.nvidia.com/orca/speedtree

[3] D. Yu, Spelunky. Boss Fight Books, 2016.
[4] Mossmouth Games, “Spelunky,” 2008.
[5] T. Francis, “Information games,” tinyurl.com/informationgames, 2019.
[6] L. Pope, “Return of the Obra Dinn,” 2018.
[7] Inkle, “Heaven’s Vault,” 2019.
[8] S. Barlow, “Her Story,” 2015.
[9] M. Digital, “Outer Wilds,” 2019.

[10] M. C. Green, G. A. B. Barros, A. Liapis, and J. Togelius, “Data agent,”
in Proceedings of the 13th International Conference on the Foundations
of Digital Games, 2018.

[11] B. Stewart, “Environmental storytelling,” tinyurl.com/stewart-es, 2015.
[12] B. Esposito, “in game design...” tinyurl.com/esposito-es, 2016.
[13] F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and P. S. Yu, “Automatic

code generation from design patterns,” IBM Systems Journal, vol. 35,
no. 2, 1996.

[14] A. R. Brown and A. Sorensen, “Interacting with generative music
through live coding,” Contemporary Music Review, vol. 28, no. 1, 2009.

[15] G. Smith, “The future of procedural content generation in games,” in
Proceedings of the Conference on Artificial Intelligence and Interactive
Digital Entertainment, 2014.

[16] Vlambeer, “Nuclear throne,” 2013.
[17] Mojang, “Minecraft,” 2009.
[18] K. Compton, B. Kybartas, and M. Mateas, “Tracery: An author-focused

generative text tool,” in Interactive Storytelling: 8th International Con-
ference on Interactive Digital Storytelling, 2015.

[19] I. Lambe and Z. Scott, “Elegy for a dead world,” 2014.
[20] J. Ryan, “Curating simulated storyworlds,” Ph.D. dissertation, 2018.
[21] D. Cook, B. Fulton, J. Gonzales, Y. Bialoskursky, and M. Fitch,

“Game design patterns that facilitate strangers becoming “friends”,” in
Proceedings of the Eleventh Project Horseshoe, 2016.

[22] T. Short, D. Hurd, J. Forbes, J. Diaz, A. Ordon, C. Howe, S. Eiserloh,
and D. Cook, “Coziness in games: An exploration of safety, softness,
and satisfied needs,” in Proceedings of the Twelfth Project Horseshoe,
2017.

[23] M. Cook, “More unpredictable stuff,” https://tinyurl.com/cook-
unpredictable, 2015.

[24] M. Cook, S. Colton, J. Gow, and G. Smith, “General analytical tech-
niques for parameter-based procedural content generators,” in 2019 IEEE
Conference on Games, 2019.

