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Abstract— This paper proposes a novel voice adaptation 

method that we applied to interactive activities such as games 

where source and target data are unaligned. Conventional 

methods have seen the use of probabilistic models or more 

recently, Deep Neural Networks. Common for most methods is 

that they require multiple subjects to train in conjunction, thus 

voice adaptation is not practical to be used in commercial 

applications. We propose a method which convert audible 

frequencies to light spectrum simple RGB color format, and not 

comparing sound signal similarities, but rather likeness in color.  

The comparison is done using multi-objective optimization 

which considers raw and normalized frame colors as two 

separate objectives to be evaluated, respectively audible and 

spectral structure. The distance for the objectives is used to 

select an ideal output frame. Finally, prosodic information such 

as speech intensity is translated from measured input values 

onto the designated output frame. The method is evaluated 

using MOS, ABX, performance benchmark and lastly 

implemented into the Unity3D game engine as a proof of 

concept. Results show good sound quality and high performance 

with little output fragmentation. 

Keywords—voice adaptation, speech processing, real-time, 

multi-objective optimization problems, video games 

I. INTRODUCTION 

Voice adaptation (VA), sometimes referred to as voice 
conversion or voice transformation [1-5], is the act of 
translating a message spoken in a source voice into a target 
voice, retaining the speaking pattern represented in prosodic 
information. This effectively allows the user to speak with 
another subject’s voice through a microphone and processing 
component. VA can be categorized into two types: Parallel 
and nonparallel. The former trains two or more subjects to 
map speech characteristics and sometimes physical traits. This 
process can be long and complicated, making it difficult for 
anyone to use such a system without lengthy preparations. 
However, parallel VA is the most used approach. The latter is 
when the source and target speakers are inheritable unrelated, 
allowing the training to be done by one subject, and the actual 
VA by another. This can be achieved by either constructing a 
pseudo dataset for each source and target speaker pairs, 
transformation by using existing parallel datasets with 
separate utterances paired by estimation, or lastly by 
estimating corresponding phonemic content per speaker.  

This paper introduces a novel nonparallel method with 
features to enhance adaptation quality, ease of use and hope to 
see real world use. Our method is designed to work with very 
limited amount of training data, opening the possibility that 
anyone can train and use such a system. We have learned a 
great deal from previous [6-7] research and applying various 
methods in order to reduce frame dependency between 

speakers. This functions by normalizing both voices to a 
common format, based on unaligned data where frames can 
be looked up for correspondence during the adaptation 
process. This paper proposes many improved measures to 
solve the primary challenges with VA, as such our method 
consists of two steps; pre-processing in order to create a target 
voice profile from phonemic content, and real-time matching 
which compares frames from the source and target. The inner 
working of these steps is detailed in section 3. 

In traditional online games, a player may choose an alias 
as their name and an avatar as their visual representation, but 
their voice is always transmitted as their own. We think VA is 
a fitting element to introduce into online games as a way to 
test the technology, and so that players may not only feel more 
anonymous behind another voice, but to increase game-world 
immersion by having the players speak with the voice of their 
game character. Currently, voice-interactable software do not 
feature VA components. The state of VA technology has been 
immature for commercial use. 

In order to create a reliable and performant VA system, we 
can presume two primary requirements: One; it must be able 
to match frames from two speakers with high accuracy, and 
two; it must be able to relay the prosodic information from the 
source to the target frame. from other methods is that we shift 
the focus from viewing VA as traditional speech processing 
problem that handles the human physique, to a search problem 
that views a subject’s voice as a collection of the sounds they 
can produce. Therefore, our goal with pre-processing is to 
obtain the possible sounds the target can produce and store this 
information, then in real-time puzzle together the desired 
uttering from comparing frames using multi-objective 
optimization. Additionally, instead of comparing acoustic 
information, we translate frames to RGB color values, 
simplifying the format that the multi-objective optimization 
function needs to work with. It is much easier to compare two 
colors using a distance function than raw or even processed 
acoustic information for every frame, thus improving the real-
time performance of the overall method. 

II. RELATED WORK 

A. Traditional Voice Adaptation 

Most traditional research that were considered state-of-

the-art are based on probabilistic models and rule-based 

methods. Generally, spectral conversion techniques have 

been used for over a decade, and they can usually perform 

more accurate spectral mapping using Gaussian Mixture 

Modelling (GMM) compared to the rule-based methods 

which can be unstable in their results. Probabilistic models 

have been somewhat of a go-to approach [3] [8-9] for voice 



adaptation. Many concurrent systems focus on the spectral 

conversion of the adaptation, and often apply basic 

adjustments such as pitch shifting to simulate prosody [8] 

[10].  

B. Later Voice Adaptation 

Not only statistical methods have seen the light such as Wu 
et al. [11] and Takashima et al. [12] where they employ 
exemplar-based voice conversion. They saw an improved 
conversion quality comparable to Maximum Likelihood 
GMM (ML, GMM). Additionally, Chen et al. [13] uses a 
layer-based generative training Deep Neural Network (DNN) 
to perform voice conversion. They saw experimental 
improvements over classical methods. However, the training 
is complicated and requires multiple source speakers. Other 
research [14] employs a training step using interactive 
evolution which considers the parameters of pitch, power and 
length. These are then subsequently applied to real-time 
adaptation in order to perform prosody. Results show that 
evolutionary computation could get closer to a target 
compared to a human with trial-and-error. [15]’s approach 
considers mapping of the voice spectrum which is stored in a 
“codebook”, and then codebooks between speakers are 
compared. In its learning step, they employ two speakers and 
dynamic time warping in order to produce vectors that could 
be corresponding between them. In [16], they employ 
VOCALOID’s database which is created in an associated way 
as our voice profiles, except here, too, the physical aspects of 
the voice were taken into consideration. In even more recent 
times, more research has attempt nonparallel rather than 
parallel VA despite its difficulties using various methods such 
as CycleGAN [17] and spectral conversion [18]. There have 
been international contests [19] to judge several VA systems, 
but none have seen commercial use in interactive software. 

Many recent works use variational auto-encoders (VAE) 
which is a deep learning technique. VAEB (Bayes) is one of 
the more popular versions of this technique and is used to learn 
a model p using an encoder q. p is parametrized as (1) where 
𝜇(𝑧), 𝜎⃗(𝑧)  are further parametrized by a neural network. 
Finally, the model q is similarly parametrized. 

𝑝(𝑥|𝑧) = 𝒩 (𝑥; 𝜇(𝑧), 𝑑𝑖𝑎𝑔(𝜎⃗(𝑧))
2

) 

𝑝(𝑧) = 𝒩(𝑧; 0, 𝐼), 

𝑞(𝑧|𝑥) = 𝒩 (𝑧; 𝜇(𝑥), 𝑑𝑖𝑎𝑔(𝜎⃗(𝑥))
2

) 

(1) 

III. DESIGN AND SUPPORTING METHODS 

Design-wise our method is very different from previous 
work and related work. The reason we chose to implement 
multi-objective optimization problems (MOP) (see section 4) 
is due to the fact that non-parallel VA, in various approaches 
has difficulties finding the ideal unaligned target data. MOP 
can help us decide which target frame are ideal based on 
several factors that does not need to be pre-trained. Our 
method takes a signal processing problem and turns it into a 
more traditional search problem; the search is assisted by 
multi-objective evolutionary algorithms which is a 
powerhouse of decision-making when the overall problem is 
large, but can be divided into many smaller instances. There 
are two steps to conducting VA; pre-processing and frame 
adaptation. Before any VA can be conducted, a voice profile 
must be generated in the pre-processing step as seen in Fig. 1. 

 
Fig. 1. Pre-processing steps to produce a voice profile. 

 
This is done by recording a voice subject who is guided by a 
user-friendly graphical user interface in order to complete the 
recording within desired parameters. The subject is presented 
with a manuscript generated by the system for a given 
language, which is a text composed of supporting words, 
phonemes and various combined utterings. Grammar and 
semantics are irrelevant, we are only trying to produce unique 
sounds for the recording. The system makes sure the subject 
speaks within “default” intensities, e.g. the intensity for 
normal, relaxed speech. Failure to utter within the desired 
parameters prompt a re-uttering until the recording is 
completed.  At the end, the voice recording is trimmed for 
empty noise before compiled into an optimized file which is 
used for later output sampling. Next, the acoustic data is split 
into many 6 milliseconds long frames with a splitting 
increment of 3 milliseconds, generating large volumes of data. 
From here on, any processing takes place on a frame-to-frame 
basis. 

A. Stylized Quantization 

 In order to perform reliable comparisons between various 
frames, they must all be normalized to a base format. This 
reduces frame dependency between speakers, allowing 
Speaker A’s components for ‘hello’ to be recognized in 
Speaker B’s ‘hello’ by eliminating miniscule acoustic 
indifferences which otherwise would have an impact. It 
should be noted that the output frames are most likely 
collected from various uttering’s fragments, rather than the 
direct correlating word, due to the fact we record all the 
phonemes used in various utterings. Quantization is often used 
in traditional signal processing, here we apply a stylized 
version which uses pitch as the primary parameter and 
constraints are set for min and max fundamental frequencies 
in which the frame is bound to.  

 

Fig. 2. Acoustic data is quantized according to a resolution alpha. 
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The frame’s polarizing amplitude points are mapped to 
resolution steps, but points with very small distance between 
each other are discarded. The frame is forced into the 
quantization space regardless of its specifications. The 
resolution is called alpha and dictates the complexity of the 
quantized signal. A low value yields an abstracted signal, 
while a high value is truer to the initial acoustic representation. 
The quantizer is non-uniform and uses rounding (2) to the 
nearest alpha step. The step size is denoted as Δ, and the 
notation floor() depicts a floor function. Sampling rate is 
dictated by adverse values in the quantization space (Fig. 2) 
that are considered paramount features of the frequency 
domain, mapped at runtime for each frame. There is no 
reconstruction stage and the results are used for the final frame 
generation. 

B. Frame Generation 

 Sound and color can both be defined by a frequency, thus 
it is possible to convert (3) between them for exchanging 
representations of data. The frequency is just one aspect of 
their value, the other is represented by smaller components. In 
sound these components can be constrained to pressure and 
time, while in color they are red, green and blue values. 
Having to account for the relationship in sound pressure in the 
temporal domain for the length of the frame is inconvenient as 
complexity and voice profile volume increases. With color we 
only need to worry about 3 static values for any frame in any 
circumstance. When a frame is translated to color, we extract 
the average frequency for the entirety of the frame based on 
an n number of points, for two different states of the frame. 
The first state is before quantization, where the points are any 
polarizing amplitudes and crossing the baseline. The second is 
the same for the quantized frame. These make up the 
objectives in our multi-objective function which checks the 
distance (4) between two frame’s colors, so that we can find 
the best match between the actual acoustic representation and 
abstracted representation. The RGB values are clamped from 
the output frequency converted in (3) to the frequencies 
associated with the visible light spectrum, from violet (790 
THz), blue, cyan, green, yellow, orange to red (405 THz). The 
min and max values for sound are human hearing range, which 
varies from as low as 12Hz to 28,000Hz, but is mostly 
described as 20Hz to 20,000Hz, also used in this paper. 

𝐿𝜈𝑜𝑢𝑡 = (
𝑆𝜈𝑖𝑛 − 𝑆𝜈𝑚𝑖𝑛

𝑆𝜈𝑚𝑎𝑥 − 𝑆𝜈𝑚𝑖𝑛
) × (𝐿𝜈𝑚𝑎𝑥 − 𝐿𝜈𝑚𝑖𝑛) + 𝐿𝜈𝑚𝑖𝑛 (3) 

𝑑𝑖𝑠𝑡 = √(𝑅2 − 𝑅1)2 + (𝐺2 − 𝐺1)2 + (𝐵2 − 𝐵1)2 (4) 

IV. MULTI-OBJECTIVE VOICE ADAPTATION 

Multi-objective optimization problems considers 
optimization problems consisting of more than one objective 
function that are to be optimized simultaneously. This is a tool 
often used in fields such as engineering and economics in 
order to find an optimal solution for conflicting objectives. 
The output of the optimization is not a single perfect solution, 
but many distributed over a Pareto front (Fig. 3). An ideal 
solution can be selected from the set depending on which 
function holds more weight. 

 Previously we attempted to find the ideal output frame 
based on a single objective, and while it in many cases does 
find an acceptable solution, it could not do so for all. The 
human voice is a difficult medium because it is composed of 
many fine traits varying from each person. To improve the 

matchmaking of source-to-target frames, we evaluate multiple 
objectives for a single frame to find the target which most 
accurately represents the source sound. This is a novel use of 
MOP as it has not been used for VA previously. The strength 
of MOP is that it is more likely reach ideal results the longer 
it runs. However, with real-time output there is a serious time-
constraint, as such there are strict parameters for how our 
implementation can run, as seen in Table 1. Since we are using 
a standard function such as DTLZ2, we must convert our 
objective values to its parameter space using (3), but with 
DTLZ2’s known min and max objective values from a 
reference run.  

A. Multi-objective Evaluation using MOEA/D 

 In MOEA/D [20], multi-objective problems are handled as 
a set of single-objective problems, each defined by a scalar 
function utilizing a set of weight vectors (5). The 
normalization of the objective space for m-objectives can be 
defined as (6) subject to 𝑥 ∈ 𝑋 , where 𝑓𝑖(𝑥)  is the i-th 
objective to be minimized (𝑖 = 1, 2, … , 𝑚), 𝑥  is a decision 
vector and X is a feasible region of x in the decision space. A 
set of uniformly distributed weight vectors are generated 
according to (7), and the amount of weight vectors H are the 
same as the population size. Each single-objective problem 
with its own weight vector has a single solution, and the goal 
is to search for the best solution along each weight vector.  

𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑚) (5) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑚(𝑥)) (6) 

∑ 𝑤𝑖 = 1

𝑚

𝑖=1

 𝑎𝑛𝑑 0 ≤ 𝑤𝑖 ≤ 1 𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑚 

𝑤𝑖 ∈ { 0,
1

𝐻
,

2

𝐻
, … ,

𝐻

𝐻
 }  𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑚 

(7) 

 
 We run two instances of MOEA/D for two frames in a 
queue. This effectively creates a minimum output lag of 12 
milliseconds plus-minus the time it takes to initialize 
MOEA/D for each instance’s new frame, however the result 
outweighs this delay as we can very accurately find ideal 
target frames. In Fig. 3 the two objectives are represented as 
𝑓1 and 𝑓2, 𝑓1  being normalized frame color and 𝑓2 raw frame 
color with the distribution of 15 voice profile frames as 
solutions. The initial selection of which frames from the 
profile will be used in the optimization is decided by their 
primary normalized color value. The 15 frames with the 
closest normalized color value to the current input frame are 
inserted into the MOEA/D instance. The reason we limit this 
to 15 is because population size has a large effect on the time 
MOEA/D spends on a single generation. Depending on the 
system’s hardware, this can be modified to accommodate for 
performance. In Fig. 4 we have a resulting Pareto Front from 
frame colors. The objective 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 calculates the 
frame color distance converted to objective spaced based on 
the normalized frame’s features, while 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑟𝑎𝑤 the same 
for the raw frame. An input frame’s raw frame color and 
normalized color are expected to vary slightly, as the 
normalization simplifies the signal to get rid of unwanted 
miniscule features. By using these are our objectives, we are 
able to evaluate between actual auditory features and 
simplified features (necessary for comparing very diverse 
vocal samples) using weighted color distance. If we wish to 



consider both evaluations equally important, we can select a 
solution closest to the middle of the objective min- and max 
values. Often the case of short runtimes based on few 
generations or short amounts of time, MOEA/D struggles to 
find optimal solutions for the whole population. However 
what we are left with are much better options than assuming 
ideal frames on our own and the configuration of MOEA/D 
can be changed at any time depending on the user’s hardware, 
done in an instant rather than hours or days recalibrating with 
large datasets. 

TABLE I.  MOEA/D CONFIGURATION 

Parameter  Value 

Problem type  DTLZ2 

Max generations  10 

Test function  TCHn1 

(or max time alottment)  6ms 

Population size  15 

Neighborhood size  3 

Concurrent instances  2 threads 

 

 
Fig. 3. Reference Pareto Front for 15 solutions over 100 generations. 

 

 
Fig. 4. Using weights we can decide which feature is more important for 

final selection by distance d. 

B. Sound to Color Effectiveness 

By translating a sound to color, we achieve the fact that 

the format’s memory footprint is smaller due to the simplified 

container structure, allowing for better performance. It’s also 

easier to visualize the process so that we can create better 

interactions. A color can be normalized to a single integer 

value, very convenient in MOEA/D which can achieve more 

desirable results the longer it runs. Thus, the simpler data 

conversion the better.  

 

 

Fig. 5. Frame colors for input to optimimal target frames. 

 

In modern games, especially A.I. components require 

many CPU resources to perform. If this technology is to be 

utilized in games, we know it must be very lightweight for 

developers to consider it. In Fig. 5 we see bars representing 

the intensity and color signature of input and output frames. 

For frames A and B, their colors are 94.19% similar, while C 

and D are 87.27%, which we consider acceptable. If we pre-

process even longer, we are more likely to achieve color 

similarity above 90% for most cases. 

C. Partial Frame Smoothing 

 As each output frame is obtained from varying locations 
in the voice profile, their temporal structure does not 
seamlessly connect where one frame ends and the next starts. 
This affects final sound quality and to solve this we propose 
partial frame smoothing (Fig. 6) using weights for a portion of 
the frame. It’s a simple, but effective solution. By not doing 
so the stitching of random frames together would sound 
obvious to the listener as oddly sounding artifacts throughout 
the output stream. We apply this to the first and last sections 
of a frame, using the information obtained from the previous 
frame. 

D. Dynamic Power 

In order to present the output speech with the prosodic 

depiction of the input speaker, dynamic power is used where 

per source frame a power level is measured from -1.0 to 1.0 

and multiplied to the target frame (Fig. 7) before output. This 

is possible due to the nature of how we create our voice 

profile which is based off a “neutral” power level derived 

from the intensity of normal speech, ranging from 50 to 60 

decibels. We can obtain the current power of a frame by 

analyzing its frequency and the average volume distribution, 

from where the decibel levels are obtained, which are in turn 

normalized to fit in the range of -1.0 to 1.0 based on realistic 

min- and max values for speaking and the range of the input 

device. 



 
Fig. 6. Unrelated frames are smoothed together for a more natural sound 

(applied after dynamic power adjustment). 

 

 
Fig. 7. Source power is translated onto the target frame. 

 

E. Technical Implementation 

While this essentially is a problem of sound, visual 

representation is equally important in order to provide good 

usability. Using .NET Core 3.1 we have a custom software 

which is used to define manuscripts, create voice profiles and 

perform tests. 

TABLE II.  CONTENTS OF A VOICE PROFILE FRAME 

Field  Value 

ID  12503 

Audio begin  3m24s115ms 

Audio end  3m24s121ms 

Raw frame color  rgb(23, 55, 210) 

Normalized frame color  rgb(19, 68, 197) 

Average pitch (normalized)  0.4211 

Base power (normalized)  0.325 

 

 

Fig. 8. Unity3D VA-Handler component parameters. 

The same components used in this are seamlessly importable 
to the Unity3D [21] (Fig. 7) game engine. The implementation 
of MOEA/D is a custom C# version based on the source code 
used for the research done by [20]. Porting of this framework 
allows for high effectiveness when testing and using the VA 
system. 

V. EXPERIMENTS AND RESULTS 

We wish to evaluate the degree of sound quality, 
adaptation similarity, ease of training, ease of use and 
implementation to a game engine. The tests were judged by 
both native and non-native English speakers using a voice 
profile based on one English manuscript with a duration of 5 
minutes. The speakers were all 10 males (ages 22-35), none 
with a background in speech processing. The speech material 
to be adapted was based on different content than the source 
manuscript. Fragmentation is the case where a frame could not 
be adapted and is presented in the performance test results. 
Adaptation quality and similarity is judged in the Mean 
Opinion Score (MOS) test. A blind test (ABX) was also 
evaluated. In the game engine application (Table 4), the test 
manuscript was used to input speech which is adapted through 
the software, sent over the network and back again before 
outputted in the target voice profile to work as a proof of 
concept that VA can be utilized in online game software. The 
test environment is presented in Table 5. 

A. Methods 

1) MOS: Measures the quality of the VA output. The 

score represents the overall stimuli and is expressed as an 

absolute category rating (ACR) as seen in Table 3. A voice 

subject different from the voice profile uttered words from a 

testing manuscript and the output played back to individuals 

who rated the experience. 

2) ABX: A subject is presented with two audio samples, 

A and B and must be able to differentiate between them. The 

samples represent the target profile’s original audio and 

source speaker’s adapted frames. Finally a Sample X is 

presented which can be either of the previous, and the order 

of A and B’s playback is random. The subject must be able to 

identify sample X as the A or B with a high probability. A 

low probabilty means that the adapted playback is similar to 

the original audio. Each set of A-B are played back 5 times 

for 20 different utterings. So that the subject does not to 

become accustomed to the same sounds thus “blinded”, the 

utterings are also played in a random order. 

3) Performance: The software is benchmarked in terms 

of how quickly a target frame can be acquired and how close 

the color distances are. Additionally, missing frames are 

registered as fragmentation. The test was carried out for 20 

words of various length uttered 3 times in random order. 

TABLE III.  ABSOLUTE CATEROGY RATING FOR MOS 

Rating   Degree  

5   Excellent  

4  Good 

3  Fair 

2  Poor 

1  Bad 



TABLE IV.  GAME ENGINE AND PROJECT SETTINGS 

Field  Type 

Game engine  Unity 3D (v. 2019.1) 

Lisence type  Free 

Project type  Universal Render Pipeline (3D) 

Input system  Unity3D native 

Primary components 
 Input, AudioClip, Network 

VAHandlera 

a. Custom component. Others are native. 

 

TABLE V.  TEST ENVIRONMENT 

Component   Specification  

OS   Windows 10 64-bit edition  

CPU  Intel Core i5-4690K 3.5-3.9 GHz 

GPU  ASUS STRIX RX480 8GB 

RAM  16 GB 

Input device 
 Dynamic microphone  

at 44.1 kHz/48 kHz sample rate 

Software   .NET Core v3.1 application 

 

B. Results 

1) MOS: Playback of 30 selected utterings.  

 

Fig. 9. MOS rating: Majority rated output as good. 

 

Generally, the shorter utterings were rated the best, but not 

exclusively.  

 

2) ABX: Results for 30 utterings over 5 sessions.  

 

Fig. 10. Blind test: Sound quality is comparable to original audio. 

 

Lower percentages of correct guesses conclude that the 

subject was unable to tell if the playback was adapted or the 

original voice. 

3) Performance: Speeds and output fragmentation.  

TABLE VI.  PERFORMANCE, AVERAGE AND WORST 

Type Average Worst 

Input-to-Color 380μs 590μs 

MOEA/D Init per frame 940μs 4ms 

Input to match 5 11ms 

Post-processing 

(power, smoothing) 
2ms 4ms 

Timer bias 

(best guess) 
2ms 4ms 

Fragmentation per 100 frames 5 11 

 

MOEA/D initialization time varies every time as it uses a 

random function to evaluate the first generation before 

beginning its main evaluation loop. In a best-case scenario, 

the target frame was found within the time it was processing 

the next frame in the queue, effectively having an output 

delay of only one frame. Fragmentation could be registered 

as 0, but we chose not to accept the results from MOEA/D if 

the color distance was greater than 150 (max distance is 441). 

VI. DISCUSSION 

A. Comparing Results to Recent Related Work 

Comparing to related work in the field, [17] who are using 

a method known as CycleGAN (Generative Adversarial 

Networks) used for a non-parallel based off 200 utterances 

per speaker and unaligned data. CycleGAN is 6-layer forward 

neural network (NN) which in a MOS test achieved slightly 

above average results, better than traditional work, and on 

pair with concurrent research who use NN. Additionally, 

GANs on a GPU may take hours, and on a common CPU 

more than a day depending on the dataset and number of 

layers. However, MOS’ scoring offers little insight into 

nuanced perceptions of the user; thus, a more detailed rating 

system is ideal, but since MOS is commonly used in the field 

it is the practical for comparing research. We imagine players 

or small-time developers would not see this as user-friendly 

unless the results can be excellent. Another use of neural 

networks in [22] is based on DNN and while they observe 

good results in the MOS test, the execution time is not great 

because it includes time spent extracting features, converting 

and restoration. One of our goals is to propose a lightweight, 

speedily set up VA framework for both the creator and user, 

and we can avoid such calibration steps by utilizing MOP in 

our non-parallel method. [23] employs more training time 

and larger data and claim to have a superior approach, but 

their results suggest typical VA performance near the average 

mark. If we can propose a faster method that achieve better 

than average results using a more lightweight training 

approach, DNN might be more suited for non-parallel VA 

methods where there are more constraints for data alignment. 

There is however a trade-off between having a simple to use 

system and sound quality. We think this can be solved by 

several simple improvements for our case, such as even 

shorter frames, introducing relation-conscious population 

selection for MOEA/D, and improved manuscript reading. 

One issue is what if our manuscript recording did not contain 

proper phoneme information. How can we reconstruct the 

missing frames in our library, could it be done during 



runtime? Possibly it could be plausible to stitch together 

assumed missing frames from even smaller segments of 

existing frames, based on known information. [24] employs 

frequency warping using many warping factors but considers 

going the opposite route of using just a single warping factor. 

Their results are considered good average performance 

compared against the state-of-the-art statistical methods at 

the time. These results show that current approaches all fall 

towards the average mark, even the more state-of-the-art 

methods such as DNN. [25] utilizing DNN see mixed results 

regarding speaker likeness and training volume, as such this 

is a global challenge for VA. The proposed approach is also 

very portable and new voices can easily be added. It has few 

dependencies so that it functions without pre-formatted 

speech data for training. [26] investigated at the time a new 

VA method based on frequency warping plus amplitude 

scaling, which while required parallel data, not much of it. 

They compared it to state-of-the-art (GMM) methods, while 

also claiming to be a simple framework. They saw that such 

a method had very slight improvements, but they made a 

point that their method is more robust than traditional 

methods in the case where training data is not in ideal 

amounts. Their subjective evaluations saw average results.  

 

In the experimental tests, testing software built using [27] 

was used, while in a more commercial scenario this would 

have been seamlessly integrated into the game software with 

very little required configuration from the source speaker, as 

preparation can be done ahead when creating the target 

profile. It should ideally be as natural to setup as regular voice 

chat is today. The user should not be required to learn a 

complex procedure in order to benefit from this system. 

B. Benefit of MOP in VA 

As mentioned, the voice is a difficult medium to work 

with. Despite our ears being able to identify ‘hello’ as ‘hello’ 

for 100 different utterings, its digital signature is different for 

each one due to fine nuances in the spectral domain. By 

erasing these with stylized quantization, we’re left with many 

comparable data, but the voice has more than one feature, 

thus it’s difficult to compare all data fairly and decide which 

attributes are more important. MOP is a powerful tool in 

exactly this arena and by changing the problem perspective 

from acoustic to search problem, we are truly benefitting of 

MOP in this case as we can easily dictate the attributes used 

for objectives. Compared with other state-of-the-art methods 

like DNN, a framework like MOEA/D can easily be tweaked 

to accommodate for new tactics by a few parameters while a 

trained DNN might have to re-learn with new acoustic 

material from the start. 

 

By using both a raw and normalized frame, we can 

perform weighted selections based on which objective should 

be considered more important. On one side, comparing raw 

frames singlehandedly is often difficult as perfect matches are 

not guaranteed, which is why normalized frames are used to 

hint the objective function in the right direction. However, 

relying solely on the normalized frames could result in 

matches that look similar in color, but are slightly off in 

auditory senses due to using average frame pitch for 

converting to colors. Using the weighted combination of 

these gives the most reliable target frame for a given input 

frame. We realize could be further improved by subdividing 

a frame and use the average pitch for a given set of sub-

frames and is considered for future work. 

 

Compared to our previous work [7] which did not use 

MOP, but a custom search implementation based on cross-

correlation of frame abstractions, we observe two major 

improvements. First, since we are dealing with a more 

effective data format, comparisons yield more robust results 

so that fragmentation technically does not occur. If we wish 

to accept these results as ideal or not is another factor. 

Secondly, if we previously failed to find a satisfactory frame, 

the search would span across a much larger data set and spend 

a large amount of time (in the real-time sense) before it 

returned an empty frame. Now, we initialize MOEA/Ds 

population with 15 of the already closest frames to our target, 

thus the range of frames in which we search is narrowed 

down, and it is guaranteed to return a result which immensely 

speeds up the process. Right now, each frame is handled 

independently, but we consider that using the previous 

frame’s information for populating the next MOEA/D 

instance, we can improve the frame selection to even more 

relevant frames from the voice profile. 

C. Role of VA in Future Game Software 

We believe a technology like VA can potentially be 

accommodated with other voice-utilizing software such as 

Text-to-Speech systems or A.I.-based assistants found in 

smart devices in the future. There is also a risk that such a 

technology may be used to impersonate other individuals, 

however where this technology could be used for its full good 

potential is in the online gaming world, where players might 

miss out on experiences because they are too shy to talk with 

other players, or revealing their voice in general. This can be 

solved by introducing VA to the game and will not only 

protect the identity of the player but increase game-world 

immersion as the output voice may be that of the chosen 

character or import a custom profile from an online library to 

customize the game further. Such a feat would complete the 

anonymity of an online virtual presence. Depending on the 

game type, various complexity of voice profiles could be 

implemented. Shorter ones for simple voice commands (e.g. 

“Supplies, please”), and longer for free speak. Thus, VA 

could potentially be applied in games ranging from strategy 

to open-world. For smaller studios, rather than dealing with 

costly voice-over work, a simple recording from a voice 

subject could suffice for the entirety of the game’s lifespan if 

done satisfactory, and the library could easily be added to 

with minimal work. 

VII. CONCLUSION 

We proposed a very simple to use lightweight voice 

adaptation which introduces multi-objective optimization 

problems in MOEA/D to find an ideal target frame from 

unaligned data in real-time. Due to this, performance and 

matching rate is very reliable, and this process could be 

utilized by both developers and users in order to create voice 

profiles based on relatively short recordings. The increased 

performance opens possibilities for other refinements in 

future work that will focus on improving the current design 

to accommodate for shorter training times and matching 

quality.  
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