
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Lightweight Multi-objective Voice Adaptation

for Real-time Speech Interaction Applied in Games

1st Mads Midtlyng

Department of Computer Science

Hosei University

Tokyo, Japan

midtlyng.madsalexander.9c@stu.hosei.ac.jp

2nd Yuji Sato

Department of Computer Science

Hosei University

Tokyo, Japan

yuji@k.hosei.ac.jp

Abstract— This paper proposes a novel voice adaptation

method that we applied to interactive activities such as games

where source and target data are unaligned. Conventional

methods have seen the use of probabilistic models or more

recently, Deep Neural Networks. Common for most methods is

that they require multiple subjects to train in conjunction, thus

voice adaptation is not practical to be used in commercial

applications. We propose a method which convert audible

frequencies to light spectrum simple RGB color format, and not

comparing sound signal similarities, but rather likeness in color.

The comparison is done using multi-objective optimization

which considers raw and normalized frame colors as two

separate objectives to be evaluated, respectively audible and

spectral structure. The distance for the objectives is used to

select an ideal output frame. Finally, prosodic information such

as speech intensity is translated from measured input values

onto the designated output frame. The method is evaluated

using MOS, ABX, performance benchmark and lastly

implemented into the Unity3D game engine as a proof of

concept. Results show good sound quality and high performance

with little output fragmentation.

Keywords—voice adaptation, speech processing, real-time,

multi-objective optimization problems, video games

I. INTRODUCTION

Voice adaptation (VA), sometimes referred to as voice
conversion or voice transformation [1-5], is the act of
translating a message spoken in a source voice into a target
voice, retaining the speaking pattern represented in prosodic
information. This effectively allows the user to speak with
another subject’s voice through a microphone and processing
component. VA can be categorized into two types: Parallel
and nonparallel. The former trains two or more subjects to
map speech characteristics and sometimes physical traits. This
process can be long and complicated, making it difficult for
anyone to use such a system without lengthy preparations.
However, parallel VA is the most used approach. The latter is
when the source and target speakers are inheritable unrelated,
allowing the training to be done by one subject, and the actual
VA by another. This can be achieved by either constructing a
pseudo dataset for each source and target speaker pairs,
transformation by using existing parallel datasets with
separate utterances paired by estimation, or lastly by
estimating corresponding phonemic content per speaker.

This paper introduces a novel nonparallel method with
features to enhance adaptation quality, ease of use and hope to
see real world use. Our method is designed to work with very
limited amount of training data, opening the possibility that
anyone can train and use such a system. We have learned a
great deal from previous [6-7] research and applying various
methods in order to reduce frame dependency between

speakers. This functions by normalizing both voices to a
common format, based on unaligned data where frames can
be looked up for correspondence during the adaptation
process. This paper proposes many improved measures to
solve the primary challenges with VA, as such our method
consists of two steps; pre-processing in order to create a target
voice profile from phonemic content, and real-time matching
which compares frames from the source and target. The inner
working of these steps is detailed in section 3.

In traditional online games, a player may choose an alias
as their name and an avatar as their visual representation, but
their voice is always transmitted as their own. We think VA is
a fitting element to introduce into online games as a way to
test the technology, and so that players may not only feel more
anonymous behind another voice, but to increase game-world
immersion by having the players speak with the voice of their
game character. Currently, voice-interactable software do not
feature VA components. The state of VA technology has been
immature for commercial use.

In order to create a reliable and performant VA system, we
can presume two primary requirements: One; it must be able
to match frames from two speakers with high accuracy, and
two; it must be able to relay the prosodic information from the
source to the target frame. from other methods is that we shift
the focus from viewing VA as traditional speech processing
problem that handles the human physique, to a search problem
that views a subject’s voice as a collection of the sounds they
can produce. Therefore, our goal with pre-processing is to
obtain the possible sounds the target can produce and store this
information, then in real-time puzzle together the desired
uttering from comparing frames using multi-objective
optimization. Additionally, instead of comparing acoustic
information, we translate frames to RGB color values,
simplifying the format that the multi-objective optimization
function needs to work with. It is much easier to compare two
colors using a distance function than raw or even processed
acoustic information for every frame, thus improving the real-
time performance of the overall method.

II. RELATED WORK

A. Traditional Voice Adaptation

Most traditional research that were considered state-of-

the-art are based on probabilistic models and rule-based

methods. Generally, spectral conversion techniques have

been used for over a decade, and they can usually perform

more accurate spectral mapping using Gaussian Mixture

Modelling (GMM) compared to the rule-based methods

which can be unstable in their results. Probabilistic models

have been somewhat of a go-to approach [3] [8-9] for voice

adaptation. Many concurrent systems focus on the spectral

conversion of the adaptation, and often apply basic

adjustments such as pitch shifting to simulate prosody [8]

[10].

B. Later Voice Adaptation

Not only statistical methods have seen the light such as Wu
et al. [11] and Takashima et al. [12] where they employ
exemplar-based voice conversion. They saw an improved
conversion quality comparable to Maximum Likelihood
GMM (ML, GMM). Additionally, Chen et al. [13] uses a
layer-based generative training Deep Neural Network (DNN)
to perform voice conversion. They saw experimental
improvements over classical methods. However, the training
is complicated and requires multiple source speakers. Other
research [14] employs a training step using interactive
evolution which considers the parameters of pitch, power and
length. These are then subsequently applied to real-time
adaptation in order to perform prosody. Results show that
evolutionary computation could get closer to a target
compared to a human with trial-and-error. [15]’s approach
considers mapping of the voice spectrum which is stored in a
“codebook”, and then codebooks between speakers are
compared. In its learning step, they employ two speakers and
dynamic time warping in order to produce vectors that could
be corresponding between them. In [16], they employ
VOCALOID’s database which is created in an associated way
as our voice profiles, except here, too, the physical aspects of
the voice were taken into consideration. In even more recent
times, more research has attempt nonparallel rather than
parallel VA despite its difficulties using various methods such
as CycleGAN [17] and spectral conversion [18]. There have
been international contests [19] to judge several VA systems,
but none have seen commercial use in interactive software.

Many recent works use variational auto-encoders (VAE)
which is a deep learning technique. VAEB (Bayes) is one of
the more popular versions of this technique and is used to learn
a model p using an encoder q. p is parametrized as (1) where
𝜇(𝑧), 𝜎⃗(𝑧) are further parametrized by a neural network.
Finally, the model q is similarly parametrized.

𝑝(𝑥|𝑧) = 𝒩 (𝑥; 𝜇(𝑧), 𝑑𝑖𝑎𝑔(𝜎⃗(𝑧))
2

)

𝑝(𝑧) = 𝒩(𝑧; 0, 𝐼),

𝑞(𝑧|𝑥) = 𝒩 (𝑧; 𝜇(𝑥), 𝑑𝑖𝑎𝑔(𝜎⃗(𝑥))
2

)

(1)

III. DESIGN AND SUPPORTING METHODS

Design-wise our method is very different from previous
work and related work. The reason we chose to implement
multi-objective optimization problems (MOP) (see section 4)
is due to the fact that non-parallel VA, in various approaches
has difficulties finding the ideal unaligned target data. MOP
can help us decide which target frame are ideal based on
several factors that does not need to be pre-trained. Our
method takes a signal processing problem and turns it into a
more traditional search problem; the search is assisted by
multi-objective evolutionary algorithms which is a
powerhouse of decision-making when the overall problem is
large, but can be divided into many smaller instances. There
are two steps to conducting VA; pre-processing and frame
adaptation. Before any VA can be conducted, a voice profile
must be generated in the pre-processing step as seen in Fig. 1.

Fig. 1. Pre-processing steps to produce a voice profile.

This is done by recording a voice subject who is guided by a
user-friendly graphical user interface in order to complete the
recording within desired parameters. The subject is presented
with a manuscript generated by the system for a given
language, which is a text composed of supporting words,
phonemes and various combined utterings. Grammar and
semantics are irrelevant, we are only trying to produce unique
sounds for the recording. The system makes sure the subject
speaks within “default” intensities, e.g. the intensity for
normal, relaxed speech. Failure to utter within the desired
parameters prompt a re-uttering until the recording is
completed. At the end, the voice recording is trimmed for
empty noise before compiled into an optimized file which is
used for later output sampling. Next, the acoustic data is split
into many 6 milliseconds long frames with a splitting
increment of 3 milliseconds, generating large volumes of data.
From here on, any processing takes place on a frame-to-frame
basis.

A. Stylized Quantization

 In order to perform reliable comparisons between various
frames, they must all be normalized to a base format. This
reduces frame dependency between speakers, allowing
Speaker A’s components for ‘hello’ to be recognized in
Speaker B’s ‘hello’ by eliminating miniscule acoustic
indifferences which otherwise would have an impact. It
should be noted that the output frames are most likely
collected from various uttering’s fragments, rather than the
direct correlating word, due to the fact we record all the
phonemes used in various utterings. Quantization is often used
in traditional signal processing, here we apply a stylized
version which uses pitch as the primary parameter and
constraints are set for min and max fundamental frequencies
in which the frame is bound to.

Fig. 2. Acoustic data is quantized according to a resolution alpha.

 𝑄(𝑥) = ∆ ∙ (
𝑥

∆
+

1

2
) = ∆ ∙ 𝑓𝑙𝑜𝑜𝑟 (

𝑥

∆
+

1

2
) (2)

The frame’s polarizing amplitude points are mapped to
resolution steps, but points with very small distance between
each other are discarded. The frame is forced into the
quantization space regardless of its specifications. The
resolution is called alpha and dictates the complexity of the
quantized signal. A low value yields an abstracted signal,
while a high value is truer to the initial acoustic representation.
The quantizer is non-uniform and uses rounding (2) to the
nearest alpha step. The step size is denoted as Δ, and the
notation floor() depicts a floor function. Sampling rate is
dictated by adverse values in the quantization space (Fig. 2)
that are considered paramount features of the frequency
domain, mapped at runtime for each frame. There is no
reconstruction stage and the results are used for the final frame
generation.

B. Frame Generation

 Sound and color can both be defined by a frequency, thus
it is possible to convert (3) between them for exchanging
representations of data. The frequency is just one aspect of
their value, the other is represented by smaller components. In
sound these components can be constrained to pressure and
time, while in color they are red, green and blue values.
Having to account for the relationship in sound pressure in the
temporal domain for the length of the frame is inconvenient as
complexity and voice profile volume increases. With color we
only need to worry about 3 static values for any frame in any
circumstance. When a frame is translated to color, we extract
the average frequency for the entirety of the frame based on
an n number of points, for two different states of the frame.
The first state is before quantization, where the points are any
polarizing amplitudes and crossing the baseline. The second is
the same for the quantized frame. These make up the
objectives in our multi-objective function which checks the
distance (4) between two frame’s colors, so that we can find
the best match between the actual acoustic representation and
abstracted representation. The RGB values are clamped from
the output frequency converted in (3) to the frequencies
associated with the visible light spectrum, from violet (790
THz), blue, cyan, green, yellow, orange to red (405 THz). The
min and max values for sound are human hearing range, which
varies from as low as 12Hz to 28,000Hz, but is mostly
described as 20Hz to 20,000Hz, also used in this paper.

𝐿𝜈𝑜𝑢𝑡 = (
𝑆𝜈𝑖𝑛 − 𝑆𝜈𝑚𝑖𝑛

𝑆𝜈𝑚𝑎𝑥 − 𝑆𝜈𝑚𝑖𝑛
) × (𝐿𝜈𝑚𝑎𝑥 − 𝐿𝜈𝑚𝑖𝑛) + 𝐿𝜈𝑚𝑖𝑛 (3)

𝑑𝑖𝑠𝑡 = √(𝑅2 − 𝑅1)2 + (𝐺2 − 𝐺1)2 + (𝐵2 − 𝐵1)2 (4)

IV. MULTI-OBJECTIVE VOICE ADAPTATION

Multi-objective optimization problems considers
optimization problems consisting of more than one objective
function that are to be optimized simultaneously. This is a tool
often used in fields such as engineering and economics in
order to find an optimal solution for conflicting objectives.
The output of the optimization is not a single perfect solution,
but many distributed over a Pareto front (Fig. 3). An ideal
solution can be selected from the set depending on which
function holds more weight.

 Previously we attempted to find the ideal output frame
based on a single objective, and while it in many cases does
find an acceptable solution, it could not do so for all. The
human voice is a difficult medium because it is composed of
many fine traits varying from each person. To improve the

matchmaking of source-to-target frames, we evaluate multiple
objectives for a single frame to find the target which most
accurately represents the source sound. This is a novel use of
MOP as it has not been used for VA previously. The strength
of MOP is that it is more likely reach ideal results the longer
it runs. However, with real-time output there is a serious time-
constraint, as such there are strict parameters for how our
implementation can run, as seen in Table 1. Since we are using
a standard function such as DTLZ2, we must convert our
objective values to its parameter space using (3), but with
DTLZ2’s known min and max objective values from a
reference run.

A. Multi-objective Evaluation using MOEA/D

 In MOEA/D [20], multi-objective problems are handled as
a set of single-objective problems, each defined by a scalar
function utilizing a set of weight vectors (5). The
normalization of the objective space for m-objectives can be
defined as (6) subject to 𝑥 ∈ 𝑋 , where 𝑓𝑖(𝑥) is the i-th
objective to be minimized (𝑖 = 1, 2, … , 𝑚), 𝑥 is a decision
vector and X is a feasible region of x in the decision space. A
set of uniformly distributed weight vectors are generated
according to (7), and the amount of weight vectors H are the
same as the population size. Each single-objective problem
with its own weight vector has a single solution, and the goal
is to search for the best solution along each weight vector.

𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑚) (5)

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑚(𝑥)) (6)

∑ 𝑤𝑖 = 1

𝑚

𝑖=1

 𝑎𝑛𝑑 0 ≤ 𝑤𝑖 ≤ 1 𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑚

𝑤𝑖 ∈ { 0,
1

𝐻
,

2

𝐻
, … ,

𝐻

𝐻
 } 𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑚

(7)

 We run two instances of MOEA/D for two frames in a
queue. This effectively creates a minimum output lag of 12
milliseconds plus-minus the time it takes to initialize
MOEA/D for each instance’s new frame, however the result
outweighs this delay as we can very accurately find ideal
target frames. In Fig. 3 the two objectives are represented as
𝑓1 and 𝑓2, 𝑓1 being normalized frame color and 𝑓2 raw frame
color with the distribution of 15 voice profile frames as
solutions. The initial selection of which frames from the
profile will be used in the optimization is decided by their
primary normalized color value. The 15 frames with the
closest normalized color value to the current input frame are
inserted into the MOEA/D instance. The reason we limit this
to 15 is because population size has a large effect on the time
MOEA/D spends on a single generation. Depending on the
system’s hardware, this can be modified to accommodate for
performance. In Fig. 4 we have a resulting Pareto Front from
frame colors. The objective 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 calculates the
frame color distance converted to objective spaced based on
the normalized frame’s features, while 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑟𝑎𝑤 the same
for the raw frame. An input frame’s raw frame color and
normalized color are expected to vary slightly, as the
normalization simplifies the signal to get rid of unwanted
miniscule features. By using these are our objectives, we are
able to evaluate between actual auditory features and
simplified features (necessary for comparing very diverse
vocal samples) using weighted color distance. If we wish to

consider both evaluations equally important, we can select a
solution closest to the middle of the objective min- and max
values. Often the case of short runtimes based on few
generations or short amounts of time, MOEA/D struggles to
find optimal solutions for the whole population. However
what we are left with are much better options than assuming
ideal frames on our own and the configuration of MOEA/D
can be changed at any time depending on the user’s hardware,
done in an instant rather than hours or days recalibrating with
large datasets.

TABLE I. MOEA/D CONFIGURATION

Parameter Value

Problem type DTLZ2

Max generations 10

Test function TCHn1

(or max time alottment) 6ms

Population size 15

Neighborhood size 3

Concurrent instances 2 threads

Fig. 3. Reference Pareto Front for 15 solutions over 100 generations.

Fig. 4. Using weights we can decide which feature is more important for

final selection by distance d.

B. Sound to Color Effectiveness

By translating a sound to color, we achieve the fact that

the format’s memory footprint is smaller due to the simplified

container structure, allowing for better performance. It’s also

easier to visualize the process so that we can create better

interactions. A color can be normalized to a single integer

value, very convenient in MOEA/D which can achieve more

desirable results the longer it runs. Thus, the simpler data

conversion the better.

Fig. 5. Frame colors for input to optimimal target frames.

In modern games, especially A.I. components require

many CPU resources to perform. If this technology is to be

utilized in games, we know it must be very lightweight for

developers to consider it. In Fig. 5 we see bars representing

the intensity and color signature of input and output frames.

For frames A and B, their colors are 94.19% similar, while C

and D are 87.27%, which we consider acceptable. If we pre-

process even longer, we are more likely to achieve color

similarity above 90% for most cases.

C. Partial Frame Smoothing

 As each output frame is obtained from varying locations
in the voice profile, their temporal structure does not
seamlessly connect where one frame ends and the next starts.
This affects final sound quality and to solve this we propose
partial frame smoothing (Fig. 6) using weights for a portion of
the frame. It’s a simple, but effective solution. By not doing
so the stitching of random frames together would sound
obvious to the listener as oddly sounding artifacts throughout
the output stream. We apply this to the first and last sections
of a frame, using the information obtained from the previous
frame.

D. Dynamic Power

In order to present the output speech with the prosodic

depiction of the input speaker, dynamic power is used where

per source frame a power level is measured from -1.0 to 1.0

and multiplied to the target frame (Fig. 7) before output. This

is possible due to the nature of how we create our voice

profile which is based off a “neutral” power level derived

from the intensity of normal speech, ranging from 50 to 60

decibels. We can obtain the current power of a frame by

analyzing its frequency and the average volume distribution,

from where the decibel levels are obtained, which are in turn

normalized to fit in the range of -1.0 to 1.0 based on realistic

min- and max values for speaking and the range of the input

device.

Fig. 6. Unrelated frames are smoothed together for a more natural sound

(applied after dynamic power adjustment).

Fig. 7. Source power is translated onto the target frame.

E. Technical Implementation

While this essentially is a problem of sound, visual

representation is equally important in order to provide good

usability. Using .NET Core 3.1 we have a custom software

which is used to define manuscripts, create voice profiles and

perform tests.

TABLE II. CONTENTS OF A VOICE PROFILE FRAME

Field Value

ID 12503

Audio begin 3m24s115ms

Audio end 3m24s121ms

Raw frame color rgb(23, 55, 210)

Normalized frame color rgb(19, 68, 197)

Average pitch (normalized) 0.4211

Base power (normalized) 0.325

Fig. 8. Unity3D VA-Handler component parameters.

The same components used in this are seamlessly importable
to the Unity3D [21] (Fig. 7) game engine. The implementation
of MOEA/D is a custom C# version based on the source code
used for the research done by [20]. Porting of this framework
allows for high effectiveness when testing and using the VA
system.

V. EXPERIMENTS AND RESULTS

We wish to evaluate the degree of sound quality,
adaptation similarity, ease of training, ease of use and
implementation to a game engine. The tests were judged by
both native and non-native English speakers using a voice
profile based on one English manuscript with a duration of 5
minutes. The speakers were all 10 males (ages 22-35), none
with a background in speech processing. The speech material
to be adapted was based on different content than the source
manuscript. Fragmentation is the case where a frame could not
be adapted and is presented in the performance test results.
Adaptation quality and similarity is judged in the Mean
Opinion Score (MOS) test. A blind test (ABX) was also
evaluated. In the game engine application (Table 4), the test
manuscript was used to input speech which is adapted through
the software, sent over the network and back again before
outputted in the target voice profile to work as a proof of
concept that VA can be utilized in online game software. The
test environment is presented in Table 5.

A. Methods

1) MOS: Measures the quality of the VA output. The

score represents the overall stimuli and is expressed as an

absolute category rating (ACR) as seen in Table 3. A voice

subject different from the voice profile uttered words from a

testing manuscript and the output played back to individuals

who rated the experience.

2) ABX: A subject is presented with two audio samples,

A and B and must be able to differentiate between them. The

samples represent the target profile’s original audio and

source speaker’s adapted frames. Finally a Sample X is

presented which can be either of the previous, and the order

of A and B’s playback is random. The subject must be able to

identify sample X as the A or B with a high probability. A

low probabilty means that the adapted playback is similar to

the original audio. Each set of A-B are played back 5 times

for 20 different utterings. So that the subject does not to

become accustomed to the same sounds thus “blinded”, the

utterings are also played in a random order.

3) Performance: The software is benchmarked in terms

of how quickly a target frame can be acquired and how close

the color distances are. Additionally, missing frames are

registered as fragmentation. The test was carried out for 20

words of various length uttered 3 times in random order.

TABLE III. ABSOLUTE CATEROGY RATING FOR MOS

Rating Degree

5 Excellent

4 Good

3 Fair

2 Poor

1 Bad

TABLE IV. GAME ENGINE AND PROJECT SETTINGS

Field Type

Game engine Unity 3D (v. 2019.1)

Lisence type Free

Project type Universal Render Pipeline (3D)

Input system Unity3D native

Primary components
 Input, AudioClip, Network

VAHandlera

a. Custom component. Others are native.

TABLE V. TEST ENVIRONMENT

Component Specification

OS Windows 10 64-bit edition

CPU Intel Core i5-4690K 3.5-3.9 GHz

GPU ASUS STRIX RX480 8GB

RAM 16 GB

Input device
 Dynamic microphone

at 44.1 kHz/48 kHz sample rate

Software .NET Core v3.1 application

B. Results

1) MOS: Playback of 30 selected utterings.

Fig. 9. MOS rating: Majority rated output as good.

Generally, the shorter utterings were rated the best, but not

exclusively.

2) ABX: Results for 30 utterings over 5 sessions.

Fig. 10. Blind test: Sound quality is comparable to original audio.

Lower percentages of correct guesses conclude that the

subject was unable to tell if the playback was adapted or the

original voice.

3) Performance: Speeds and output fragmentation.

TABLE VI. PERFORMANCE, AVERAGE AND WORST

Type Average Worst

Input-to-Color 380μs 590μs

MOEA/D Init per frame 940μs 4ms

Input to match 5 11ms

Post-processing

(power, smoothing)
2ms 4ms

Timer bias

(best guess)
2ms 4ms

Fragmentation per 100 frames 5 11

MOEA/D initialization time varies every time as it uses a

random function to evaluate the first generation before

beginning its main evaluation loop. In a best-case scenario,

the target frame was found within the time it was processing

the next frame in the queue, effectively having an output

delay of only one frame. Fragmentation could be registered

as 0, but we chose not to accept the results from MOEA/D if

the color distance was greater than 150 (max distance is 441).

VI. DISCUSSION

A. Comparing Results to Recent Related Work

Comparing to related work in the field, [17] who are using

a method known as CycleGAN (Generative Adversarial

Networks) used for a non-parallel based off 200 utterances

per speaker and unaligned data. CycleGAN is 6-layer forward

neural network (NN) which in a MOS test achieved slightly

above average results, better than traditional work, and on

pair with concurrent research who use NN. Additionally,

GANs on a GPU may take hours, and on a common CPU

more than a day depending on the dataset and number of

layers. However, MOS’ scoring offers little insight into

nuanced perceptions of the user; thus, a more detailed rating

system is ideal, but since MOS is commonly used in the field

it is the practical for comparing research. We imagine players

or small-time developers would not see this as user-friendly

unless the results can be excellent. Another use of neural

networks in [22] is based on DNN and while they observe

good results in the MOS test, the execution time is not great

because it includes time spent extracting features, converting

and restoration. One of our goals is to propose a lightweight,

speedily set up VA framework for both the creator and user,

and we can avoid such calibration steps by utilizing MOP in

our non-parallel method. [23] employs more training time

and larger data and claim to have a superior approach, but

their results suggest typical VA performance near the average

mark. If we can propose a faster method that achieve better

than average results using a more lightweight training

approach, DNN might be more suited for non-parallel VA

methods where there are more constraints for data alignment.

There is however a trade-off between having a simple to use

system and sound quality. We think this can be solved by

several simple improvements for our case, such as even

shorter frames, introducing relation-conscious population

selection for MOEA/D, and improved manuscript reading.

One issue is what if our manuscript recording did not contain

proper phoneme information. How can we reconstruct the

missing frames in our library, could it be done during

runtime? Possibly it could be plausible to stitch together

assumed missing frames from even smaller segments of

existing frames, based on known information. [24] employs

frequency warping using many warping factors but considers

going the opposite route of using just a single warping factor.

Their results are considered good average performance

compared against the state-of-the-art statistical methods at

the time. These results show that current approaches all fall

towards the average mark, even the more state-of-the-art

methods such as DNN. [25] utilizing DNN see mixed results

regarding speaker likeness and training volume, as such this

is a global challenge for VA. The proposed approach is also

very portable and new voices can easily be added. It has few

dependencies so that it functions without pre-formatted

speech data for training. [26] investigated at the time a new

VA method based on frequency warping plus amplitude

scaling, which while required parallel data, not much of it.

They compared it to state-of-the-art (GMM) methods, while

also claiming to be a simple framework. They saw that such

a method had very slight improvements, but they made a

point that their method is more robust than traditional

methods in the case where training data is not in ideal

amounts. Their subjective evaluations saw average results.

In the experimental tests, testing software built using [27]

was used, while in a more commercial scenario this would

have been seamlessly integrated into the game software with

very little required configuration from the source speaker, as

preparation can be done ahead when creating the target

profile. It should ideally be as natural to setup as regular voice

chat is today. The user should not be required to learn a

complex procedure in order to benefit from this system.

B. Benefit of MOP in VA

As mentioned, the voice is a difficult medium to work

with. Despite our ears being able to identify ‘hello’ as ‘hello’

for 100 different utterings, its digital signature is different for

each one due to fine nuances in the spectral domain. By

erasing these with stylized quantization, we’re left with many

comparable data, but the voice has more than one feature,

thus it’s difficult to compare all data fairly and decide which

attributes are more important. MOP is a powerful tool in

exactly this arena and by changing the problem perspective

from acoustic to search problem, we are truly benefitting of

MOP in this case as we can easily dictate the attributes used

for objectives. Compared with other state-of-the-art methods

like DNN, a framework like MOEA/D can easily be tweaked

to accommodate for new tactics by a few parameters while a

trained DNN might have to re-learn with new acoustic

material from the start.

By using both a raw and normalized frame, we can

perform weighted selections based on which objective should

be considered more important. On one side, comparing raw

frames singlehandedly is often difficult as perfect matches are

not guaranteed, which is why normalized frames are used to

hint the objective function in the right direction. However,

relying solely on the normalized frames could result in

matches that look similar in color, but are slightly off in

auditory senses due to using average frame pitch for

converting to colors. Using the weighted combination of

these gives the most reliable target frame for a given input

frame. We realize could be further improved by subdividing

a frame and use the average pitch for a given set of sub-

frames and is considered for future work.

Compared to our previous work [7] which did not use

MOP, but a custom search implementation based on cross-

correlation of frame abstractions, we observe two major

improvements. First, since we are dealing with a more

effective data format, comparisons yield more robust results

so that fragmentation technically does not occur. If we wish

to accept these results as ideal or not is another factor.

Secondly, if we previously failed to find a satisfactory frame,

the search would span across a much larger data set and spend

a large amount of time (in the real-time sense) before it

returned an empty frame. Now, we initialize MOEA/Ds

population with 15 of the already closest frames to our target,

thus the range of frames in which we search is narrowed

down, and it is guaranteed to return a result which immensely

speeds up the process. Right now, each frame is handled

independently, but we consider that using the previous

frame’s information for populating the next MOEA/D

instance, we can improve the frame selection to even more

relevant frames from the voice profile.

C. Role of VA in Future Game Software

We believe a technology like VA can potentially be

accommodated with other voice-utilizing software such as

Text-to-Speech systems or A.I.-based assistants found in

smart devices in the future. There is also a risk that such a

technology may be used to impersonate other individuals,

however where this technology could be used for its full good

potential is in the online gaming world, where players might

miss out on experiences because they are too shy to talk with

other players, or revealing their voice in general. This can be

solved by introducing VA to the game and will not only

protect the identity of the player but increase game-world

immersion as the output voice may be that of the chosen

character or import a custom profile from an online library to

customize the game further. Such a feat would complete the

anonymity of an online virtual presence. Depending on the

game type, various complexity of voice profiles could be

implemented. Shorter ones for simple voice commands (e.g.

“Supplies, please”), and longer for free speak. Thus, VA

could potentially be applied in games ranging from strategy

to open-world. For smaller studios, rather than dealing with

costly voice-over work, a simple recording from a voice

subject could suffice for the entirety of the game’s lifespan if

done satisfactory, and the library could easily be added to

with minimal work.

VII. CONCLUSION

We proposed a very simple to use lightweight voice

adaptation which introduces multi-objective optimization

problems in MOEA/D to find an ideal target frame from

unaligned data in real-time. Due to this, performance and

matching rate is very reliable, and this process could be

utilized by both developers and users in order to create voice

profiles based on relatively short recordings. The increased

performance opens possibilities for other refinements in

future work that will focus on improving the current design

to accommodate for shorter training times and matching

quality.

REFERENCES

[1] Y. Eason, Stylianou, “Voice Transformation: A Survey,” IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Taipei, pp. 3585-3588, April, 2009.

[2] D. Erro, A. Moreno, “Weighted Frequency Warping for Voice
Conversion,” 8th Annual Conference of the International Speech
Communication Association INTERSPEECH, Antwerp, pp. 1965-
1968, August, 2007.

[3] Y. Stylianou, O. Cappé, E. Moulines, “Continuous probabilistic
transform for voice conversion,” IEEE Transaction on Speech and
Audio Processing, vol. 1, Seattle, pp. 285-288, May 1998.

[4] T. Toda, H. Saruwatari, K. Shikano. “Voice Conversion Algorithm
based on Gaussian Mixture Model with Dynamic Frequency warping
of STRAIGHT spectrum,” Proc. ICASSP, pp. 841-844, 2001.

[5] E. Moulines and Y. Sagisaka, “Voice conversion: State of the art and
perspectives,” Speech Communication. Special Issue, vol. 16, no. 2,
February 1995.

[6] M. Midtlyng, and Y. Sato, “Real-time Voice Adaptation with Abstract
Normalization and Sound-indexed Based Search,” IEEE International
Conference on Systems, Man, and Cybernetics (SMC), Budapest, pp.
60-65, October 2016.

[7] M. Midtlyng, and Y. Sato, “Voice Adaptation from Mean Dataset
Voice Profile with Dynamic Power,” IEEE International Conference
on Systems, Man, and Cybernetics (SMC), Shizuoka, pp. 2037-2042,
October 2018.

[8] A. Kain and M.W. Macon, “Spectral Voice Conversion for Text-To-
Speech Synthesis,” IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Seattle, pp. 285-299, May
1998.

[9] H. Ye and S. Young, “Quality-enhanced Voice Morphing using
Maximum Likelihood Transformations,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 14, no. 4, pp. 1301-1312, July
2006.

[10] Y. Chen, M. Chu, E. Chang, J. Liu and R. Liu, “Voice Conversion with
Smoothed GMM and Map Adaptation,” 8th European Conference on
Speech Communication and Technology (Eurospeech 2003 –
Interspeech 2003), Geneva, pp. 2413-2416, September 2003.

[11] Z. Wu, T. Virtanen, E. S. Chng and H. Li, “Exemplar-based sparse
Representation with Residual Compensation for Voice Conversion,”
IEEE Transaction on Audio, Speech, and Language Processing, vol.
22, no. 10, pp. 1506-1521, October 2014.

[12] R. Takashima, T. Takiguchi and Y. Ariki, “Exemplar-based Voice
conversion in noisy environment,” IEEE Spoken Language
Technology Workshop (SLT), Miami, pp. 313-317, December 2012.

[13] F. Villavicencio and J. Bonada, “Voice Conversion using Deep Neural
Networks with Layer-wise Generative Training,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing (TASLP),
Journal, pp. 1859-1872, December 2014.

[14] Y. Sato, “Voice Quality Conversion using Interactive Evolution of
Prosodic Control,” Applied Soft Computing Journal, Elsevier, pp. 181-
192, June 2004.

[15] M. Abe, S. Nakamura, K. Shikano and H. Kuwabara, “Voice
Conversion Through Vector Quantization,” IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP),
vol. 1, New York, pp. 655-658, April 1988.

[16] F. Villavicencio and J. Bonada, “Applying Voice Conversion to
Concatenative Singing-Voice Synthesis,” 11th Annual Conference of
the International Speech Communication Association
(INTERSPEECH), Chiba, pp. 2162-2165, September 2010.

[17] F. Fang, J. Yamagishi, I. Echizen, and J. Lorenzo-Trueba, “High-
Quality Nonparallel Voice Conversion Based on Cycle-Consistent
Adversarial Network,” IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Calgary, pp. 5279–5283,
September 2018.

[18] C-C. Hsu, H-T. Hwang, Y-C. Wu, Y. Tsao and H-M. Wang, “Voice
conversion from non-parallel corpora using variational auto-encoder,”
Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference (APSIPA), Jeju, pp. 1–6, December 2016.

[19] J. Lorenzo-Trueba, J. Yamagishi, T. Toda, D. Saito, F. Villavicencio,
T. Kinnunen et al., “The Voice Conversion Challenge 2018: Promoting

Development of Parallel and Nonparallel Methods,” Odyssy 2018,
April 2018.

[20] Q. Zhang, H. Li, “MOEA/D: A Multiobjective Evolutionary Algorithm
Based on Decomposition,” IEEE Transactions on Evolutionary
Computation, vol. 11, issue 6, pp. 712–731, December 2007.

[21] Unity3D, Unity Technologies. Accessed on: January 1. 2019 [Online].
Available: https://unity.com/.

[22] Y. Sekii, R. Orihara, K. Kojima, Y. Sei, Y. Tahara and A. Ohsuga,
“Fast Many-To-One Voice Conversion using Autoencoders,”
International Conference on Agents and Artificial Intelligence
(ICAART), Porto, pp. 164-174, Feburary 2017.

[23] G. Kotani, D. Saito and N. Minematsu, “Voice Conversion Based on
Deep Neural Networks for Time-variant Linear Transformations,”
Asia-Paficic Signal and Information Processing Association Annual
Summit and Conference (APSIPA ASC), Kuala Lumpur, pp. 1259-
1262, December 2017.

[24] M. Tamura, M Morita, T. Kagoshima and M. Akamine, “One Sentence
Voice Adaptation using GMM-based Frequency Warping and Shift
With a Sub-band Basis Spectrum Model,” IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
Prague, pp. 5124-5127, May 2011.

[25] Y. Li, K.A. Lee, Y. Yuan, H. Li and Z. Yang, “Many-to-many Voice
Conversion Based on Bottleneck Features with Variational
Autoencoder for Non-parallel Training Data,” Asia-Pacific Signal and
Information Processing Association Annual Summit and Conference
(APSIPA), Hawaii, pp. 829-833, August 2018.

[26] D. Erro, E. Navas and I. Hernáez, “Parametric Voice Conversion Based
on Bilinear Frequency Warping Plus Amplitude Scaling,” IEEE
Transactions on Audio, Speech, and Language Processing, vol 21, No.
3, pp. 556-566, March 2013.

[27] Microsoft .NET Core 3.x SDK (2019) [Online]. Available:
https://dotnet.microsoft.com/download/dotnet/current

