
Formal Game Grammar and Equivalence
Paul Riggins

Berkeley Center for Theoretical Physics
University of California

Berkeley, CA, USA
priggins@berkeley.edu

David McPherson
Department of Electrical Engineering and Computer Sciences

University of California
Berkeley, CA, USA

david.mcpherson@eecs.berkeley.edu

Abstract—We develop methods to formally describe and com-
pare games, in order to probe questions of game structure and
design, and as a stepping stone to predicting player behavior from
design patterns. We define a grammar-like formalism to describe
finite discrete games without hidden information, allowing for
randomness, and mixed sequential and simultaneous play. We
make minimal assumptions about the form or content of game
rules or user interface. The associated game trees resemble hybrid
extensive- and strategic-form games, in the game theory sense. By
transforming and comparing game trees, we develop equivalence
relations on the space of game systems, which equate games
that give players the same meaningful agency. We bring these
together to suggest a method to measure distance between games,
insensitive to cosmetic variations in the game logic descriptions.

Index Terms—game grammar, game representation, game tree,
equivalence relations, similarity measures, mathematical ludology

I. INTRODUCTION

Games are notable among artistic media in that the interactive
systems underlying them can often be precisely defined. This
has enabled great mathematical progress in understanding
game-centric decision-making processes, through efforts in
game theory and artificial intelligence (AI) (e.g., [1]), but this
progress has been largely isolated from other, “softer” subfields
of game studies [2], [3]. In particular, little mathematical
attention has been given to questions of game design, even
while the methods and vocabulary used by designers has
become increasingly sophisticated and systematic (e.g., [4]–
[8]). The precise definability of games, however, could also
be used to formally explore questions of interest to ludologers
and designers: How much does a game mechanic matter for
overall gameplay? What’s the best user interface to reflect the
underlying rules? Can we predict behavior in one game based
on behavior in a similar game?

In [9], we proposed the study of mathematical ludology,
aiming to bring mathematical attention to questions like these
by formally exploring the space of games and their properties.
This is, in some sense, a mathematically formal continuation of
“game grammar” efforts begun in the game design community
to atomize and interrogate game designs (e.g., [6], [10]–[12]).
In this paper1we especially develop and explore formal notions
of equivalence and similarity between games.

The ability to compare games for equivalence or similarity
could be useful for studying relationships, building taxonomies,
transferring behavioral learning (perhaps AI learning) from

one game to another, or maybe even developing approximate
game theoretic solutions for similar games. A key challenge,
however, lies in the many ways the same game can be described,
even with the same formalism. For instance, we are aware of
one other complementary work-in-progress aiming to measure
distance between games: the Digital Ludeme Project, advancing
archaeoludology [13]. The proposed method, using edit distance
between rule trees, is powerful but sensitive to cosmetic
differences in the game rules: two different descriptions could
describe identical games, yet have nonzero distance. The senses
of equivalence and similarity we propose here are specifically
designed to avoid this aesthetic sensitivity.

The key contributions of this paper are
1) We develop a grammar-like formalism to describe finite,

discrete games (Sec. II), more flexible than game theoretic
methods and more tailored for abstract structural analysis
than general gameplaying (GGP) approaches.

2) After constructing game trees (Sec. III), we develop
equivalence relations on the spaces of game trees and
game systems (Sec. IV).

3) We bring these together to suggest a way to measure
game similarity—insensitive to cosmetic variations in
rule descriptions—by sampling the game state spaces and
checking for equivalence of partial game trees (Sec. V).

II. UNDERLYING GAME SYSTEMS

The present paper will focus on the essential logic of games,
what we will call the (underlying) game system.2 This is the
base of a game description hierarchy described in [9] (see
Fig. 1), and in particular does not specify the information
available to (or hidden from) players, or the form of the
user interface—these are naturally quite important, but also
add many complexities. An underlying game system provides
the game logic as an omniscient referee might see it—as
a (nondeterministic) game of perfect information—which is
interesting in its own right and a useful foundation to build on.
In contrast to game theoretic approaches, we do not include
player preferences or payoffs (i.e., how individual players value
different outcomes) in our game descriptions. Thus we draw a
formal separation between game and players, adhering more
closely to the colloquial understanding of a game.

1Most of the content in this paper first appeared in the preprint [9].
2Comparable to the “constituative [sic] rules” of [4].

978-1-7281-4533-4/20/$31.00 ©2020 IEEE

Underlying Game System

Perceived Game System

Game Representation

Game Actualization

Fig. 1. A game description hierarchy (see [9]). Underlying Game Systems
contain the essential logic of a game. (These are the focus of this paper.)
Perceived Game Systems add an information layer, specifying what information
about the game is given to each player, and how this interacts with the game
logic. Game Representations add a user interface specification, how the game
is represented to players, e.g., visually. Game Actualizations are the real-world
realizations, like a physical chess set or software. Player preferences, skill
levels, etc., are relegated to Player Models, outside these game descriptions.

Specifically, we will focus on games that are discrete in
time and space and that have a finite state space; Def. 1 can
describe the game system of any such game. This captures
the majority of board and card games, and many video games.
Def. 1 is not the only way to describe a game system, but
it captures those minimal elements essential to the logic of
a game, while also making formally clear what agency each
player has versus what is outside their control.

In particular, Def. 1 provides: the players (P), the game state
space (S, factorized via T), initial game states (S0), decisions
available to players (D), when those decisions are legal (L), the
possible consequences of those decisions (C), how the game
state is changed as a result (A), and possible game outcomes
(O,Ω). It allows for mixed sequential and simultaneous play,
deterministic or nondeterministic, and makes no additional
assumptions about the content of games, not even presuming
the existence of boards, pieces, or alternating turns.

Definition 1 An (underlying) game system G with n players
is a 9-tuple G = 〈P, T ,S0,D,A, C, L,O,Ω〉, where:
• P = (1, . . . , n) is a list of players, agents which may

make decisions in the game.
• T = (T1, . . . , Tm) is a finite list of finite sets, called

substate tracks. The set of game states S is given by
S = T1 × · · · × Tm.

• S0 ⊂ S is a set of initial conditions.
• D is a set of decisions, the choices which players may

make in order to influence (but not directly change) the
game state. This is extended with the null decision 0 /∈ D
to form D0 ≡ D ∪ {0}.

• A is a set of actions a : S→ S, which can directly modify
the game state.

• C is a consequence function C(dn0 , s) which takes a
decision tuple dn0 ∈ Dn0 (i.e., one possibly null decision
per player) and state s ∈ S and returns a nonempty set of
consequences: a set of pairs (pa, a), where pa ∈ (0, 1] is
a non-zero probability and a is an action or product of
actions. The sum of probabilities in the set must equal 1.
These are the consequences of decisions, which may be
outside any one player’s control.

• L : P × D → 2S is a legality function, which returns a
(possibly empty) subset of S for each player p ∈ P and
decision d ∈ D, reflecting when that player can make that

decision. The legal set of decisions for player p at state
s is the set Lp(s) ≡ {d ∈ D : s ∈ L(p, d)}. A decision
d ∈ Lp(s) is legal for p at s, and illegal otherwise.

• O is the set of outcomes that can result from the game.
• Ω is an outcome function Ω : Ster → O, where Ster ≡
{s ∈ S : Lp(s) = ∅ for all p ∈ P} is the set of terminal
game states. Intuitively, Ster is the set of game states at
which no legal decisions can be made, so the game ends
and the result is computed by Ω.

The separation of decisions (player choices) from actions
(changes to the game state) via consequence functions provides
a formal separation between what individual players can and
cannot control. Consequence functions are necessary to handle
random chance and simultaneous play. In both cases, each
player can influence play by their chosen decision, but the
ultimate effect on the game state (the consequent action)
is determined probabilistically and/or after considering the
simultaneous decisions of other players (see Alg. 1 and Ex. 1).
In sequential, deterministic games, it is possible to have a
one-to-one mapping between decisions and actions—individual
players can directly determine game state changes—and so
consequence functions are conceptually superfluous.

The following algorithm can be used (by players) to play
any game with an underlying game system described by Def. 1:

Algorithm 1: Gameplay Algorithm

1 All players agree on some s0 ∈ S0. Let the current state
be s′ = s0.

2 While s′ is not a terminal state (s′ /∈ Ster), repeat:
3 Each player p selects one decision from their respective

legal set Lp(s′) at the current state. If Lp(s′) = ∅ for
a player p, then p is assigned the null decision: dp = 0.

4 Compute the set of consequences from the decision
tuple and the current state: c = C((d1, . . . , dn), s′) =
{(p1, a1), . . . , (pm, am)}. Randomly pick a consequent
action from c, where aj is chosen with probability pj .

5 Compute the new game state s′′ = ajs
′. Let s′ = s′′.

6 The game is over (s′ ∈ Ster). Compute the outcome Ω(s′).

If this algorithm can always be faithfully executed for a
game system, that system is complete [9], and its game tree(s)
can be built (see Sec. III).

Here is an example of a tic-tac-toe variant, with basic
notation described along the way. Its game tree is illustrated
in Fig. 3. More complex games (or even this one) can benefit
from richer notation in order to write them more compactly.
Some notational suggestions and examples can be found in [9];
developing notation is not the purpose of the present paper.

Example 1 (Tic-Tac-Toe with random start) Two players
play tic-tac-toe (or “3-to-15”), randomly choosing who starts.

2 7 6
9 5 1
4 3 8

Fig. 2. “Magic square” correspondence
between tic-tac-toe and 3-to-15.

(States.) We write (v)t to express the subset of S where
track Tt takes value v; product and sum notation on these
subsets denote intersection and union, respectively.

(Actions.) By a : S 7→ (v1)1 · · · (vk)k, we mean that for any
state in the subset S ⊂ S, the action a ∈ A changes the value
of track T1 to v1, and so on to track Tk, acting as the identity
on any tracks not appearing on the right-hand side. It also acts
as the identity on any state s /∈ S. E.g., if a : S 7→ (1)a and
we have some state s = (2)a(3)b, then a · s = (1)a(3)b.

(Outcome functions.) We take Ω : S 7→ ω to mean Ω(z) = ω
for all terminal states z ∈ S ⊂ S.

We’ll break up the game description for ease of exposition.
There are two players and 10 available decisions: one for each
space, plus the coin flip. There are 10 tracks to record the turn
and spaces, and the initial condition is an empty board.

P = {X,O}, D = {1, ... , 9,flip}
T : Tturn = {start,X,O},

Ti = {−,X,O} for i ∈ {1, ... , 9}
S0 = (start)turn(−)1 · · · (−)9

From the initial condition, both players can only legally (L)
choose the decision “flip”. As a consequence (C) of this joint
decision, the value of track Tturn becomes X or O with a 50-50
chance, via the action “X first” or “O first”.

L(p,flip) = (start)turn, p ∈ P
C((flip,flip),S) = {(1/2,X first), (1/2,O first)}
A ⊃ {X first, O first}, p first : (start)turn 7→ (p)turn

Players then alternate (enforced by L(p, i) and the “turn” track),
picking unclaimed (“−”) spaces via the decisions 1, ... , 9 ∈ D
until either no more spaces are available or someone wins.

L(p, i) = (p)turn(−)i E, i ∈ {1, ... , 9}
C((i, 0),S) = (1,Xi ·next), C((0, i),S) = (1,Oi ·next)
A ⊃ {X1,O1, ... ,X9,O9}, pi : (−)i 7→ (p)i

A ⊃ {next}, next : (X)turn 7→ (O)turn, (O)turn 7→ (X)turn

The game then ends in victory or draw, respectively. Note we’ve
defined an auxiliary set E to compactly capture winning ending
states. (The complement E appears in L(p, i), so play can only
legally proceed if a victory state has not been reached.)

E = EX ∪ EO, Ep =
∑

i,j,k∈{1,... ,9}
i+j+k=15

(p)i(p)j(p)k

O = {X wins,O wins, draw}
Ω : Ep 7→ p wins, otherwise 7→ draw

In tic-tac-toe, the ending states correspond to three-in-a-row
board states. In 3-to-15, these correspond to integer triples that
sum to fifteen. These games may be played with different user
interfaces, but they share the same essential logic (see Fig. 2),
and thus the same underlying game system.

A. Why not use an existing game description formalism?
Game theoretic descriptions are too limited in the games they

can practically express. Strategic- and extensive-form games

respectively describe simultaneous and sequential games well,
but lose important nuance when trying to mix the two [14],
[15]. Additionally, complex game descriptions are intractable
with game theoretic formal descriptions. Generally, either the
full game can be written explicitly as a strategic, extensive,
or combinatorial game (all intractable, e.g., for chess), or else
game theorists rely on ad hoc natural language description and
reader familiarity to communicate the rules before proceeding
to analysis (e.g., [16]). We want a way to formally, and tractably,
describe game rules even for complex games; a grammar-like
formalism is better suited to this task.

We also desire a total conceptual separation between game
and player descriptions; game theory does not make this
separation. This separation is also why we have included
randomness in the game description itself—in contrast to
typical game theory or GGP formalisms, which invoke an
extra fictional player who behaves randomly [17]–[19].

GGP descriptions like GDL [19]–[21], RBG [22], or Ludii
[18] are designed especially for efficient software implementa-
tion and AI methods, often with particular classes of games
in mind. Ludii and RBG have compact notation, but require
the construction of a game board (i.e., visual user interface)
integrated with the rules, distinguishing them most naturally
as game representations (see Fig. 1) suited to traditional board
games; we desire a lower-level description to study and compare
game rules, which makes fewer assumptions. GDL is very
generic, like we might prefer, but can be intractably verbose,
with an opaque state space. Our Def. 1 bears some formal
similarity to GDL-II without hidden information, and is just
as expressive, but offers a simpler specification of state space,
a different treatment of randomness, and we permit a more
compact and extensible notation.

III. GAME TREES

A complete game system from Def. 1 can be used to generate
a (possibly infinite) game tree or a finite (possibly nondeter-
ministic) game automaton. These are useful for visualizing and
analyzing the game systems, as well as for making connection
with existing work in game theory and AI. They are graphical
representations of Alg. 1: each playthrough from that algorithm
identifies a path from an initial node to a terminal node in a
tree or automaton. We will focus on game trees in this paper.

Definition 2 The game trees of a complete game system G is
a set of game trees τ(G) ≡ {τ(G|s0) : s0 ∈ S0}, one for each
initial condition. Each game tree τ(G|s0) is built via Alg. 2.

Each tree resulting from Alg. 2 has the following structure:
State nodes have assigned states and outgoing decision edges,
which have assigned decision tuples. These decision edges lead
to either new state nodes, or to unlabeled chance nodes which
have outgoing chance edges labeled with probabilities. These
chance edges lead to new state nodes. State nodes may be
further subdivided into single-player nodes, in which only one
player has legal decisions available (the node belongs to that
player); multiplayer nodes, in which multiple players have legal

Algorithm 2: Game Tree Construction, for τ(G|s0)

1 Draw a root node, assigned the initial state s0.
2 While not all leaves have assigned outcomes, repeat:
3 For each leaf node w in the current tree, with assigned

state s(w) but no assigned outcome, do the following:
4 Let s = s(w). If s ∈ Ster, then assign the outcome

Ω(s) to w, and stop for node w. Else, proceed:
5 Generate all legal decision tuples at state s from the

legal set Lp(s) for each player: Dn
0 (s) ≡ {(d1, ..., dn):

dp = 0 if Lp(s) = ∅, else dp ∈ Lp(s)}.
6 For each tuple dn0 ∈ Dn

0 (s), do the following:
7 Draw a child node w′ below w, with a directed edge

from w to w′. Assign dn0 to this edge.
8 Compute the set of consequences c′ = C(dn0 , s).
9 If c′ = {(1, a)}, then assign the state a · s to w′. Else:

10 For each probability-action pair (pi, ai) ∈ c′, draw a
child node w′′i with a directed edge from w′ to w′′i .
Assign pi to this edge, and the state ai · s to w′′i .

(flip, flip)

<latexit sha1_base64="4Z1aqg0IMglH2QAnRI4j8AWUIf0=">AAACA3icbVDLSgMxFM3UV62vUXe6CRahgpQZqeiy6MZlBfuAdiiZNNOGZjJDckcsQ8GNv+LGhSJu/Ql3/o1pO4taPXDh5Jx7yb3HjwXX4DjfVm5peWV1Lb9e2Njc2t6xd/caOkoUZXUaiUi1fKKZ4JLVgYNgrVgxEvqCNf3h9cRv3jOleSTvYBQzLyR9yQNOCRipax+UOsAeIA0Ej8eneO5x0rWLTtmZAv8lbkaKKEOta391ehFNQiaBCqJ123Vi8FKigFPBxoVOollM6JD0WdtQSUKmvXR6wxgfG6WHg0iZkoCn6vxESkKtR6FvOkMCA73oTcT/vHYCwaWXchknwCSdfRQkAkOEJ4HgHleMghgZQqjiZldMB0QRCia2ggnBXTz5L2mcld1K+fy2UqxeZXHk0SE6QiXkogtURTeohuqIokf0jF7Rm/VkvVjv1sesNWdlM/voF6zPHyepl9w=</latexit>

(1
, 0

)

<latexit sha1_base64="n98ovdHmq0nXEsjbYJKhEqnLCNI=">AAAB7HicbVBNSwMxEJ3Ur1q/qh69BItQQcquVPRY9OKxgtsW2qVk02wbms0uSVYoS3+DFw+KePUHefPfmLZ70NYHA4/3ZpiZFySCa+M436iwtr6xuVXcLu3s7u0flA+PWjpOFWUejUWsOgHRTHDJPMONYJ1EMRIFgrWD8d3Mbz8xpXksH80kYX5EhpKHnBJjJa/qXjjn/XLFqTlz4FXi5qQCOZr98ldvENM0YtJQQbTuuk5i/Iwow6lg01Iv1SwhdEyGrGupJBHTfjY/dorPrDLAYaxsSYPn6u+JjERaT6LAdkbEjPSyNxP/87qpCW/8jMskNUzSxaIwFdjEePY5HnDFqBETSwhV3N6K6YgoQo3Np2RDcJdfXiWty5pbr1091CuN2zyOIpzAKVTBhWtowD00wQMKHJ7hFd6QRC/oHX0sWgsonzmGP0CfPxjejZI=</latexit>

(9, 0)

<latexit sha1_base64="WL8kmgQFfpa3J/aFXKqRq4APgnc=">AAAB7HicbVBNSwMxEJ31s9avqkcvwSJUkLIrFfVW9OKxgtsW2qVk02wbmmSXJCuUpb/BiwdFvPqDvPlvTNs9aOuDgcd7M8zMCxPOtHHdb2dldW19Y7OwVdze2d3bLx0cNnWcKkJ9EvNYtUOsKWeS+oYZTtuJoliEnLbC0d3Ubz1RpVksH804oYHAA8kiRrCxkl+5OXfPeqWyW3VnQMvEy0kZcjR6pa9uPyapoNIQjrXueG5iggwrwwink2I31TTBZIQHtGOpxILqIJsdO0GnVumjKFa2pEEz9fdEhoXWYxHaToHNUC96U/E/r5Oa6DrImExSQyWZL4pSjkyMpp+jPlOUGD62BBPF7K2IDLHCxNh8ijYEb/HlZdK8qHq16uVDrVy/zeMowDGcQAU8uII63EMDfCDA4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AElFo2a</latexit>

(0
, 1

)

<latexit sha1_base64="EIKIYMvBR81qp9OV10Vhf3+bQRM=">AAAB7HicbVBNSwMxEJ3Ur1q/qh69BItQQcquVPRY9OKxgtsW2qVk02wbms0uSVYoS3+DFw+KePUHefPfmLZ70NYHA4/3ZpiZFySCa+M436iwtr6xuVXcLu3s7u0flA+PWjpOFWUejUWsOgHRTHDJPMONYJ1EMRIFgrWD8d3Mbz8xpXksH80kYX5EhpKHnBJjJa/qXLjn/XLFqTlz4FXi5qQCOZr98ldvENM0YtJQQbTuuk5i/Iwow6lg01Iv1SwhdEyGrGupJBHTfjY/dorPrDLAYaxsSYPn6u+JjERaT6LAdkbEjPSyNxP/87qpCW/8jMskNUzSxaIwFdjEePY5HnDFqBETSwhV3N6K6YgoQo3Np2RDcJdfXiWty5pbr1091CuN2zyOIpzAKVTBhWtowD00wQMKHJ7hFd6QRC/oHX0sWgsonzmGP0CfPxjcjZI=</latexit>

(0, 9)

<latexit sha1_base64="2D9jmhL/uBjnWNVffjA/CxLn9IE=">AAAB7HicbVBNSwMxEJ31s9avqkcvwSJUkLIrFfVW9OKxgtsW2qVk02wbmmSXJCuUpb/BiwdFvPqDvPlvTNs9aOuDgcd7M8zMCxPOtHHdb2dldW19Y7OwVdze2d3bLx0cNnWcKkJ9EvNYtUOsKWeS+oYZTtuJoliEnLbC0d3Ubz1RpVksH804oYHAA8kiRrCxkl9xz2/OeqWyW3VnQMvEy0kZcjR6pa9uPyapoNIQjrXueG5iggwrwwink2I31TTBZIQHtGOpxILqIJsdO0GnVumjKFa2pEEz9fdEhoXWYxHaToHNUC96U/E/r5Oa6DrImExSQyWZL4pSjkyMpp+jPlOUGD62BBPF7K2IDLHCxNh8ijYEb/HlZdK8qHq16uVDrVy/zeMowDGcQAU8uII63EMDfCDA4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AElBI2a</latexit>

(X)turn(�)1 ··· (�)9

<latexit sha1_base64="e/2wBnBUbQAZ/9cZhK13S59QauI=">AAACb3icbZBLahtBEIZbk5etPCzHCy8CoYkISAGJmdgmyc7EWXjphMgWaMTQ01OyG/Vj6K4OEcOcIqfxNjlFjuEbuEfSwq+Chr/+qqK6vryUwmEc/29Fjx4/efpsY7P9/MXLV1ud7denznjLYcSNNHacMwdSaBihQAnj0gJTuYSzfH7U1M9+gXXC6J+4KGGq2LkWM8EZBivrDHopwm+sxnU/Wyn0Vte9QT9L0iOjSsaRFwZd43zJOt14GC+D3hfJWnTJOk6y7daHtDDcK9DIJXNuksQlTitmUXAJdTv1DsKOOTuHSZCaKXDTanlXTd8Hp6AzY8PTSJfuzYmKKecWKg+diuGFu1trzIdqE4+zz9NK6NIjaL5aNPOSoqENJFoICxzlIgjGrQh/pfyC2cAioGy3028QjrHww+TeYaCkmC7oLVxV2mwVWoOt0sYpUzUHqwd7yj+c13Wgm9xleV+cfhwm+8OD7/vdw69rzhvkDXlHeiQhn8ghOSYnZEQ4+UMuyV/yr3UV7UZvI7pqjVrrmR1yK6L+NYDqvpU=</latexit>

(O)turn(X)1(�)2 ··· (�)9

<latexit sha1_base64="mscYd1TIvJj4S+U7/wwphT6GpLc=">AAACe3icbZDLbhMxFIadKdASLk3Lko1FhJRWNJrpRbS7irJgR0GkjZSJRh7PSWvFl5F9jBqN5ll4Graw5mGQ8CSzoJcjWfr9HVvH/vJSCodx/KcTrT16/GR942n32fMXLzd7W9sXznjLYcSNNHacMwdSaBihQAnj0gJTuYTLfH7W9C+/g3XC6G+4KGGq2JUWM8EZBpT1TgYpwg1Wn+udbJXQW123dBxoMtjbyfbTM6NKxpEXBl1DTrJePx7Gy6L3Q9KGPmnrPNvq7KaF4V6BRi6Zc5MkLnFaMYuCS6i7qXcQZszZFUxC1EyBm1bLP9b0bSAFnRkblka6pP/fqJhybqHycFIxvHZ3ew18qDfxODueVkKXHkHz1aCZlxQNbYTRQljgKBchMG5FeCvl18wGF0Frt5t+hPAZC19N7h0GS4rpgt7SVaXNVKE12CptSJmqOVi9d6D8w/u6DnaTuy7vh4v9YXI4PPpy2D/90HreIK/JGzIgCXlPTsknck5GhJMf5Cf5RX53/kb9aDd6tzoaddo7r8itio7+ASq7w1c=</latexit>

(X)turn(�)1 ··· (�)8(O)9

<latexit sha1_base64="Uttag8LMJVgLVAaKn4YIrNpl3ak=">AAACe3icbZDLbhMxFIadKdASLk3Lko1FhJRWNJrpRW13FWXBjoJIGykTjTyek9aKLyP7GBGN5ll4Graw5mGQ8CSzoJcjWfr9n//o2F9eSuEwjv90orVHj5+sbzztPnv+4uVmb2v70hlvOYy4kcaOc+ZACg0jFChhXFpgKpdwlc/Pm/7VN7BOGP0VFyVMFbvWYiY4w2BlvdNBivAdq3G9k60Ueqvrwd5OlqTnRpWMIy8MusY5acOfQvg06/XjYbwsel8kreiTti6yrc5uWhjuFWjkkjk3SeISpxWzKLiEupt6B2HfnF3DJEjNFLhptfxjTd8Gp6AzY8PRSJfu/xMVU84tVB6SiuGNu9trzId6E4+zk2kldOkRNF8tmnlJ0dAGGC2EBY5yEQTjVoS3Un7DbOASsHa76QcIn7HwxeTeYSCmmC7oLXRV2mwVWoOt0sYpUzUHq/cOlH/4XteBbnKX5X1xuT9MDodHnw/7Z+9bzhvkNXlDBiQhx+SMfCQXZEQ4+UF+kl/kd+dv1I92o3eraNRpZ16RWxUd/QMsssNd</latexit>

(start)turn(�)1 ··· (�)9

<latexit sha1_base64="q2gjj+aL5XMbkK/hn4KF+EXL1ww=">AAACc3icbZDNThsxEMedBVqa0jbAkYtFWilUSrTbggo3VHroEVADSNlo5fVOwIo/VvYYNVrtc/RpeqXP0Afpvd4kB75GsvSf/8xoPL+8lMJhHP9tRSuray9err9qv9548/ZdZ3PrwhlvOQy5kcZe5cyBFBqGKFDCVWmBqVzCZT49aeqXt2CdMPoHzkoYK3atxURwhsHKOkkvRfiJlUNmsd7LFhl6q+tefy9L0hOjSsaRFwZd4xxlnW48iOdBn4pkKbpkGafZZutjWhjuFWjkkjk3SuISx1VYKLiEup16B2HHlF3DKEjNFLhxNb+tph+CU9CJseFppHP3/kTFlHMzlYdOxfDGPa415nO1kcfJ4bgSuvQImi8WTbykaGgDihbCAkc5C4JxK8JfKb9hNrAIONvt9BuEYyycm9w7DJQU0wV9gKtKm61Ca7BV2jhlqqZgdf+z8s/ndR3oJo9ZPhUXnwbJ/uDgbL97/HXJeZ3skF3SIwn5Qo7Jd3JKhoSTX+Q3uSN/Wv+inWg3er9ojVrLmW3yIKL+f9cawJM=</latexit>

1/2

<latexit sha1_base64="nwKzDvHohwlwc4Sy2MYrRM4Lpak=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxhLsEo0eiF48Y5ZHAhswOvTBhdnYzM2tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJaPZpygH9GB5CFn1Fjpwbuo9Iolt+zOQVaJl5ESZKj3il/dfszSCKVhgmrd8dzE+BOqDGcCp4VuqjGhbEQH2LFU0gi1P5mfOiVnVumTMFa2pCFz9ffEhEZaj6PAdkbUDPWyNxP/8zqpCa/9CZdJalCyxaIwFcTEZPY36XOFzIixJZQpbm8lbEgVZcamU7AheMsvr5JmpexVy5f31VLtJosjDydwCufgwRXU4A7q0AAGA3iGV3hzhPPivDsfi9ack80cwx84nz9ao40y</latexit>

1/2

<latexit sha1_base64="nwKzDvHohwlwc4Sy2MYrRM4Lpak=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxhLsEo0eiF48Y5ZHAhswOvTBhdnYzM2tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJaPZpygH9GB5CFn1Fjpwbuo9Iolt+zOQVaJl5ESZKj3il/dfszSCKVhgmrd8dzE+BOqDGcCp4VuqjGhbEQH2LFU0gi1P5mfOiVnVumTMFa2pCFz9ffEhEZaj6PAdkbUDPWyNxP/8zqpCa/9CZdJalCyxaIwFcTEZPY36XOFzIixJZQpbm8lbEgVZcamU7AheMsvr5JmpexVy5f31VLtJosjDydwCufgwRXU4A7q0AAGA3iGV3hzhPPivDsfi9ack80cwx84nz9ao40y</latexit>

(O)turn(�)1 ··· (�)9

<latexit sha1_base64="OtbkPkzJ9RJjYIWDahkHmLEESjs=">AAACb3icbZDNbhMxEMedbYE25SMthx4qIYuoUoKUaBeKCreKcuiNgkhbKRutvN5Ja8UfK3uMGq32KXgarvAUPAZvgDfJoV8jWfrPf2Y0nl9eSuEwjv+2orX1R4+fbGy2t54+e/6is71z5oy3HEbcSGMvcuZACg0jFCjhorTAVC7hPJ8dN/XzH2CdMPo7zkuYKHapxVRwhsHKOoNeinCN1Ze6ny0Veqvr3qCfJemxUSXjyAuDrnE+Zp1uPIwXQe+LZCW6ZBWn2XbrTVoY7hVo5JI5N07iEicVsyi4hLqdegdhx4xdwjhIzRS4SbW4q6b7wSno1NjwNNKFe3OiYsq5ucpDp2J45e7WGvOh2tjj9MOkErr0CJovF029pGhoA4kWwgJHOQ+CcSvCXym/YjawCCjb7fQzhGMsfDO5dxgoKaYLegtXlTZbhdZgq7RxylTNwOrBO+Ufzus60E3usrwvzt4Ok4Ph+68H3aNPK84bZI+8Jj2SkENyRE7IKRkRTn6SX+Q3+dP6F+1GryK6bI1aq5mX5FZE/f9u2L6M</latexit>

Fig. 3. The first couple generations of the game tree for the tic-tac-toe system
in Ex. 1, with only a few state nodes and decision edges labeled, for brevity.
Solid nodes are state nodes, while the open node is a chance node. The
root state node has the initial state from S0. The first decision edge with
tuple (flip, flip) leads to a chance node, with outgoing chance edges both
with probability 1/2. Subsequent decisions claim numbers for a player and
toggle the turn track, e.g., (1, 0) claims 1 for X; from the resulting state
(O)turn(X)1(−)2 · · · (−)9, there are 8 legal decision tuples (0, 2), ... , (0, 9)
as the game tree continues, which would each claim a number for player O.

decisions available; and terminal state nodes, which correspond
to terminal states and have outcomes assigned to them.

A game tree generated by Alg. 2 is a sort of hybrid between
game theoretic extensive- and strategic-form games (e.g., see
[17]), except with no information sets. On single-player nodes,
individual players choose an outgoing edge to follow. To
capture simultaneous play, multiplayer nodes act as strategic
(“matrix”) form games: several players must simultaneously
make a decision, which is then evaluated by an umpire to
choose an outgoing edge to follow. (We describe this strategic-
form game with a decision matrix, see Def. 8.) This avoids
the ambiguities inherent in the information set construction
of simultaneous play in extensive form games [23], which
relies on sequential moves with hidden information, and can
be experimentally different from true simultaneous play [14],
[15]. Ultimately, an outcome is produced at a terminal node.

IV. AGENCY EQUIVALENCE

The game system Def. 1 is deliberately flexible, in order
to describe any discrete game. However, its flexibility means
that there are several ways to express the “same” game. Here
we develop two precise senses of this “sameness”: game tree
equivalence (up to relabeling) and agency equivalence. This
is a useful precursor to measuring distance between games,
where we might wish equivalent games to have zero distance.

Game tree equivalence up to relabeling (Def. 11 and
Sec. IV-A) matches game systems if they produce the same
game trees, with some variation in aesthetic labeling: e.g., the
names of decisions or states can differ, but probabilities cannot.

Agency equivalence (Def. 3) matches game systems if they
offer players the same agency, that is, the same sorts of
meaningful choices with the same sorts of consequences. We
will define this by performing a series of reductions on game
trees to prune spurious differences, declaring two game systems
equivalent if their reduced trees match. There are four kinds
of differences that we consider spurious for this purpose; we
describe them heuristically here, then formally in Sec. IV-B:

A bookkeeping subtree (Def. 12) is a portion of a game
tree where there is only one decision available at each state.
Though there may be randomness involved, play continues on
the subtree inevitably, without any chance for player influence.
Consider a version of tic-tac-toe, in which players must declare
end-of-turn after placing a symbol (X, end-of-turn, O, end-
of-turn, ...). From the standpoint of player agency, we do not
consider this meaningfully different from standard tic-tac-toe,
in which turns automatically advance (X, O, X, O, ...).

A single-player subtree (Def. 13) is a portion of the game
tree where the same single player makes several deterministic
decisions in a row. There is no difference in options or outcomes
if the player makes these decisions one at a time or all at once.
For instance, pawn promotion in chess could be split into
two steps with an intermediate state (move, then promote),
or lumped into one (move-and-promote). We do not consider
these different from the standpoint of player agency.

A symmetry-redundant subtree (Def. 14) is a portion of the
game tree that is unnecessary because it duplicates a sibling
subtree. Because of the board symmetry in tic-tac-toe, starting
in one corner versus another corner leads to substantively the
same remaining decisions for the rest of the game—even though
the precise game states are different. Even if a version of tic-
tac-toe forbid players from starting in three of the corners, and
three of the sides, we would consider it identical to standard
tic-tac-toe from the standpoint of meaningful player agency.

Finally, a decision matrix redundancy (Def. 15) occurs when
a player has two decisions at a state that would have identical
results—it really does not matter which one they pick. This
player would have the same agency if they had only one of
those decisions available. Putting all these together:

Definition 3 We say two game systems G and G′ are agency
equivalent if their respective game trees3 can be made equiv-

3For now, this and following definitions can only be usefully applied to finite
game trees, though infinite trees could be truncated and similarly compared.

alent up to relabeling (Def. 11) by performing the following
reductions, as many times as necessary, in any order:
• Bookkeeping subtree reduction (Def. 12)
• Single-player subtree reduction (Def. 13)
• Symmetry-redundant subtree reduction (Def. 14)
• Decision matrix redundancy reduction (Def. 15)

The following subsections flesh out the technical details for
these two senses of equivalence. Note, the reductions mentioned
in Def. 3 produce reduced game trees, editing the game trees
produced from Alg. 2 to remove non-essential information.
The term “game tree” should be understood below to refer to
both reduced and unreduced game trees.

A. Game Tree Equivalence up to Relabeling

To start, let’s delete all tree labels and match what remains:

Definition 4 A stripped game tree, denoted 〈T 〉, is a game
tree T with all labels removed; only the arrangement of nodes
and edges remains.

Definition 5 (Structural equivalence) Two game trees T, T ′

(or game systems G,G′) are structurally equivalent if the
stripped trees are equal 〈T 〉 = 〈T ′〉 (or if the sets of stripped
game trees are equal 〈τ(G)〉 = 〈τ(G′)〉).

This establishes a bijective structural correspondence f :
n 7→ n′, similarly f : e 7→ e′, between the labelled nodes
and edges of corresponding trees T and T ′ (or t ∈ τ(G) and
t′ ∈ τ(G′)). Several such correspondences may be possible
(e.g., because a tree is symmetric).

This is sufficient to say that the arrangement of nodes and
edges is the same. However, some labels do contain important
content that distinguishes two game systems in substance, not
just aesthetics. In particular, we want to see that corresponding
probabilities are the same, players have the same kinds of
choices available, and that the outcomes are similarly distinct.
Comparing probabilities and outcomes is straightforward:

Definition 6 (Matching probabilities) For each chance edge
e in a game tree, let p(e) be the assigned probability. Two
structurally equivalent game trees T, T ′ (or game systems G,G′)
with structural correspondence f : T → T ′ are said to have
matching probabilities if p(e) = p(f(e)) for all chance edges
e ∈ T (∈ τ(G)).

Definition 7 (Similarly distinct outcomes) Take two struc-
turally equivalent game trees T, T ′ (or game systems G,G′)
with correspondence f , let O,O′ be the sets of all distinct
outcomes assigned to their respective terminal nodes, and let
Ω(z) be the outcome assigned to a terminal node z. We say T
and T ′ (or G and G′) have similarly distinct outcomes if there
exists a bijective map o : O → O′ such that Ω(z) = o(Ω(f(z)))
for all terminal nodes z ∈ T (∈ τ(G)).

Confirming that players have the same kinds of decisions
along the way is more involved, at least formally. We want
single-player nodes to still be single-player nodes with the
same number of choices, and multiplayer nodes to still be

multiplayer nodes with the same interaction between each
player’s simultaneous decisions. In essence, we want the same
strategic-form game to be played at each internal state node,
as described in Sec. III. First let us define the decision matrix,
which describes these strategic (“matrix”) form games:

Definition 8 (Decision matrix) Let G be a game system with
players P = (p1, . . . , pn). Let w be a non-terminal state node
in a game tree T ∈ τ(G) with assigned state s and outgoing
decision edges E. Each player p has a set of legal choices `p(w)
they can select to influence the edge followed. Let `0p(w) =
`p(w) unless `p(w) is empty, in which case `0p(w) = {0}, with
0 the null choice. The decision matrix at node w is a map
Dw : `0p1(w)× · · · × `0pn(w)→ E of decision tuples to edges.

A game tree produced freshly from Alg. 2 has `p(w) =
Lp(s), the usual legal set (see Def. 1), but game tree reductions
or transformations may adjust ` (e.g., see Defs. 13 and 15).

In a tree with `p(w) = Lp(s) and each edge e ∈ E labeled
with a set of one or more unique decision tuples, Dw simply
maps each decision tuple (dp1 , . . . , dpn) ∈ Dn0 to the edge
with that tuple. An edge might obtain multiple tuples, even
though Alg. 2 only assigns one to each edge, due to something
like a symmetry-redundant subtree reduction (see Def. 14).

For example, Fig. 4a is a sample decision matrix with
outgoing edges as it might appear in a reduced game tree,
for a 3-player game with P = (P1,P2,P3). The alternative
labeling Fig. 4b helps clarify the structure of the joint decisions.
Omitting the inactive P2, who has no legal choices:

P3
d2 d3 d4

P1
d1
d2

{(d1, 0, d2),
(d1, 0, d4)} (d2, 0, d3)

{(d1, 0, d3),
(d2, 0, d2),
(d2, 0, d4)}

P3
c d e

P1
a α γ α
b γ β γ

α β γ

Fig. 4. Left: An example decision matrix in a reduced game tree (e.g., after
reduction by Def. 13 or Def. 14). Right: The same matrix, relabeled.

We say that two decision matrices match (in the context of
a game tree) if there is a self-consistent way to relabel the
players, decisions, and edges such that the relabeled players
making the relabeled decisions lead to the relabeled edges:

Definition 9 (Matching decision matrices) Take two game
trees T and T ′ that are structurally equivalent with correspon-
dence f . Let w ∈ T and w′ = f(w) ∈ T ′ be corresponding
non-terminal state nodes, with states s, s′, decision matrices
Dw, Dw′ , and sets of players P,P ′, respectively.

If possible, define a bijective player correspondence π : P →
P ′, with associated bijective maps λπ,p : `0p(w) → `0π(p)(w

′)
(p ∈ P), which correspond choices in the two games. Together,
these furnish a unique map between the decision tuples, λπ :
dn0 7→ (dn0)′, i.e., between the domains of Dw and Dw′ .

The decision matrices Dw and Dw′ are said to match,
denoted Dw ∼ Dw′ , if there exists at least one such π and
set {λπ,p} such that the matrices map to corresponding edges:
i.e., Dw(dn0) = e ∈ T and Dw′(λπ(dn0)) = f(e) ∈ T ′ for all
dn0 in the domain of Dw.

See Fig. 5 for examples. Figs. 4a and 4b could also be said to
match, since they only differ in choice labeling, if the node and
edges were placed to correspond in two structurally equivalent
trees. Note that we may relabel the decisions for each player
separately (e.g., d2 → b for P1 in Fig. 4, but d2 → c for P3),
and we may even relabel the null decision.

We can now generalize beyond individual decision matrices
to game trees and systems (see Fig. 5). Whatever relabeling is
necessary to make the decision matrices match, we demand at
least that the player relabeling is the same everywhere. It is
unimportant if the decision labels vary from matrix to matrix.

Definition 10 (Trees with matching decision matrices) Take
two structurally equivalent game trees T, T ′ (or game systems
G,G′) with structural correspondence f : T → T ′ and sets
of players P and P ′. We say these trees (or systems) have
matching decision matrices if there exists at least one bijective
player correspondence π : P → P ′ such that all corresponding
decision matrices match with respect to π—i.e., Dw ∼ Df(w)

for all internal state nodes w ∈ T (∈ G) with π as the player
correspondence. (See Def. 9. The associated decision mappings
{λπ,p} may be different for each node in the tree.)

Finally, let us put all of this together to give a broadly
useful sense of equivalence between game trees, which respects
everything about them except for the specific labels chosen to
represent players, states, decisions, and outcomes:

Definition 11 (Equivalence up to relabeling) We say that
two game trees T, T ′ are equivalent up to relabeling (or that
game systems G,G′ are game tree equivalent up to relabeling)
if T and T ′ (or G and G′) are structurally equivalent and
have matching probabilities, matching decision matrices, and
similarly distinct outcomes, all with respect to the same
structural correspondence f .

If all labels additionally happen to be identical, then the game
trees (or game systems) are simply equivalent (or game tree
equivalent). If only some labels are additionally identical, we
might say (using outcomes as an example) that two trees t and
t′ are equivalent up to relabeling and with identical outcomes.
This means that if t and t′ have structural correspondence
f : t→ t′ and Ω(z) gives the outcome assignment of terminal
node z ∈ t, then Ω(z) = Ω(f(z)) for all z.

It is worth noting that Def. 11, in not distinguishing between
the content of outcome labels, does not distinguish whether an
outcome might be good or bad for a player. The normal and
misère versions of a game have opposite win/lose conditions, for
instance, but would be considered equivalent up to relabeling.

B. Game Tree Reductions

To establish agency equivalence from Def. 3, we need to
prune those differences between trees that are not meaningful
from the standpoint of player agency. Here we describe the
relevant transformations to reduce bookkeeping subtrees, single-
player subtrees, symmetry-redundant subtrees, and decision
matrix redundancies, as heuristically described in Sec. IV.

Definition 12 A bookkeeping subtree is a subtree of a game
tree rooted at a state node r and with state nodes as leaves,
which has exactly one decision edge proceeding out of r and
each interior state node. Players cannot influence play in this
subtree. Such a subtree may be reduced as follows (see Fig. 6):

Case 1: If there are no chance nodes in the subtree:
1) There is only a single leaf, with state s. Replace the entire

subtree with a state node with state s.

Case 2: If there are chance nodes in the subtree:
1) Let G be the set of all paths from r to the subtree leaves.

Let l(g) be the final state node in each g ∈ G (i.e., the
leaves).

2) Assign each path g a probability p(g) given by the product
of the probabilities on the chance edges in g.

3) Then, if the parent r′ of the subtree root r is ...
a) Case 2a: ... a state node: Replace r with a new chance

node c.
b) Case 2b: ... a chance node c : proceed to step 4. (Note

r has an incoming chance edge with probability pr.)
c) Case 2c: ... nonexistent (r is the root of the game tree):

Replace the child of r with a new chance node c.
4) Taking the chance node c from step 3, delete all nodes

and edges between c and the leaves, non-inclusive.
5) Draw new chance edges between c and each leaf l(g),

labeled by the corresponding probabilities p(g), or pr ·p(g)
in Case 2b.

Definition 13 A single-player deterministic subtree is a sub-
tree of a game tree rooted at a state node r and with state
nodes as leaves, without any chance nodes, in which all nodes
belong to a single player (except perhaps the leaves). Only
that player has any meaningful decisions in this subtree, and
they could just as well be made all at once. Such a subtree
may be reduced as follows (see Fig. 7):

1) Let G be the set of all paths from r to its leaves. Let l(g)
be the final state node in each g ∈ G (i.e., the leaves).

2) Delete all nodes and edges between r and the leaves,
non-inclusive.

3) Draw a new decision edge between r and each leaf l(g),
labeled by the sequence of decision tuples in g.

This reduction also changes the domain of the decision
matrix Dr at r (see Def. 8): The legal choices `p(r) available
to the single player p at r are now the set of decision tuple
sequences from each g ∈ G (i.e., the labels on the new decision
edges proceeding from r), not the canonical legal set Lp.

Definition 14 A symmetry-redundant subtree is a subtree t of
a game tree rooted at a state or chance node r and extending
to all its descendants, that is equivalent up to relabeling, and
with identical players and outcomes, to a subtree t′ rooted at
a sibling node r′ (and extending to all of its descendants). (A
lone terminal node z is also considered a symmetry-redundant
subtree if its outcome Ω(z) is identical to one of its siblings.)
The symmetry-redundant subtree t may be reduced as follows:

P1
d1 d2

P2
d3 α β
d4 β γ

o3

P1
d7 d8 d9
α β γ

o2 o1 o1

o1

P2
d5 d6
α β

o2 o3

α

1/3 2/3

α β γ

β
γ

α β

A

B
C D

agency∼

p2
a b

p1
a β γ
b α β

p2
a
α

o1

p2
a b c
α γ β

o3 o2 o3

o1

p2
b c

p1
b α α
c β β

o1 o2

α

1/3

α

2/3

α γ β

β
γ

α β

A′

B′
C′

D′

Fig. 5. These are two full game trees, with state labels suppressed, outcomes oi on each terminal node, probabilities (1/3 and 2/3) on chance edges, and
decision edges labeled with decision matrix outcomes instead of sets of decision tuples, for brevity (e.g., as Fig. 4b relabels Fig. 4a). Decision matrices are
illustrated on all non-terminal state nodes, with inactive players not shown (like in Fig. 4a). Some (but not all) of the decision matrices match: A ∼ A′,
B 6∼ B′, C ∼ C′, and D 6∼ D′. However, all of them match after reduction by Def. 15: in particular, B red.∼ B′ and D

red.∼ D′ (the blank matrix B is a
decision matrix with empty domain, see Def. 15). In fact, B (D) is the reduced form of B′ (D′), after some relabeling. Thus, after these reductions, the trees
have matching decision matrices (Def. 10) under the player correspondence P1 ↔ p2 and P2 ↔ p1. In fact, because the probabilities also match and the
outcomes are similarly distinct, the two trees are agency equivalent (Def. 3).

s1 s2 s3

s4 s5 s6 s7

p1 p2

p3 p4 p5 p6

Case 1

Case 2b

Case 2a

s1

s2 s3

s4 s5 s6 s7

p1
p2p3

p2p4 p5 p6

Fig. 6. Bookkeeping subtree reduction example. Dotted lines highlight the bookkeeping subtrees before and after being reduced, exemplifying the different
cases in Def. 12. Solid dots are state nodes, circles are chance nodes, and chance edges are labeled with probabilities pi. The labels on most state nodes and
all decision edges have been omitted. Dashed lines connect to other parts of the game tree.

s1 s2 s3 s4

s5 s6

s7

d1

d1 d2 d3

d2

d4 d5

d1 d3

d6

s1 s2 s3 s4 s5 s6 s7

d1d
1

d1
d2

d 1
d 3

d
2
d
4

d
2 d

5 d
1

d
2d

5d
3

d6

Fig. 7. Single-player subtree reduction example, illustrating Def. 13. All state nodes, except possibly the leaves, belong to the same player. Internal state node
labels have been omitted. Edges have been labeled only with this player’s decisions, for brevity, since all other players take the null decision everywhere.
Dashed lines connect to other parts of the game tree.

1) Let e, e′ be the edges ingoing to r, r′. If e and e′ are . . .

a) Case 1: . . . decision edges with assigned tuple sets d(e)
and d(e′) (if only one tuple, consider it a set of size 1).
Replace the tuple set on e′ with d(e′) ∪ d(e).

b) Case 2: . . . chance edges with assigned probabilities p(e)
and p(e′): Replace the probability on e′ with p(e′)+p(e).

2) Delete the entire subtree t rooted at r, and the edge e.
3) (For Case 2:) If e′ now has assigned probability 1, this

chance edge is superfluous, as is the chance node parent c′

of r′. Delete e′, and replace c′ by moving r′ (with subtree
attached) into its place.

Note symmetry-redundant subtrees may commonly occur when
the sibling nodes r and r′ are assigned the same state, e.g.,
when two different decisions lead to the exact same game state.

Several decision tuples may end up on a single edge (e.g.,
Fig. 4a) because of symmetry-redundant subtree reductions,
which may lead to redundancies in decision matrices—if they
were not redundant already. Consider Fig. 4b, for instance,
which relabels Fig. 4a. It is clear that P3 gains no additional
agency by having choice e available in addition to choice c.
We can eliminate such meaningless redundancies in decision
matrices by removing duplicate rows and columns:

Definition 15 A decision matrix redundancy occurs when a
decision matrix Dw : `0p1 × · · · × `0pn → E contains more
than one choice for some player p which lead to the same
result. That is, when there exist distinct choices a, b ∈ `pi
for some pi such that Dw(d1, . . . , di−1, a, di+1, . . . , dk) =
Dw(d1, . . . , di−1, b, di+1, . . . , dk) for all possible choices dj ∈
`pj . The choices a and b are redundant.

To eliminate redundancies and unnecessary bookkeeping
distinctions, a reduced decision matrix can be produced as
follows (see Fig. 5 for examples):

1) If there exist two redundant choices a, b ∈ `pi for some pi,
delete one: `pi → `pi \ {b}. Repeat until no redundancies
remain for any player.

2) If all players have only a single (possibly null) choice
remaining (|`0p| = 1), there must only be a single edge e
in the image of Dw. We may define Dw : ∅→ {e}.

Any two corresponding decision matrices with empty domains
are said to match in the sense of Def. 9. Step 2 is not strictly
necessary for establishing equivalence, but reflects that in a
bookkeeping subtree, it does not matter which player(s) are
given the task of executing the bookkeeping.

V. DISCUSSION: TOWARDS GAME SIMILARITY

We have proposed a grammar-like formalism to describe
finite discrete game systems without hidden information, along
with equivalence relations on this space of games, that are
insensitive to cosmetic variations in game rules. Developing
measures of game equivalence and similarity will be important
for formally interrogating the design of games, and as a
steppingstone towards predicting player behavior from design
patterns. More broadly, we hope that such efforts may help
connect game design and mathematical experts, enriching the
many applications of games by exploring formal analogues to
the rich tools and vocabulary used in game design today.

However, for complex games it may be impractical to check
equivalence by drawing, reducing, and comparing full game
trees. One possible way forward is to learn to transform
and compare the grammars directly, using Defs. 3 and 11
as guidance for what those transformations must accomplish.

We could also move beyond game equivalence, to consider
game similarity. Suppose a ludologer supplies a mapping ψ
between the state spaces S,S′ (and perhaps also players and
outcomes) of two game systems G,G′. Then the systems
could be compared by sampling states s ∈ S, computing
some function (e.g., a partial game tree) at s and ψ(s) ∈ S′,
comparing the function values (e.g., assigning 1 if the partial
trees are equivalent after appropriate reductions, 0 otherwise),
and averaging the results. This would give a quantitative
measure of game similarity (e.g., between 0 and 1), and another
way to check equivalence (e.g., if similarity = 1). Even if only
a fraction of the states are randomly sampled, a confidence
interval could be estimated for the computed similarity.

There are several details to work out here in the calculation,
interpretation, and likelihood estimates of such a similarity
measure, which we leave for future work. For instance: in
contrast to comparing full game trees, this similarity method
could sample many states not legally accessible in standard play,
so it would compare game rules beyond just legal gameplay.
Also, since state spaces for complex games can be gargantuan,
it is unclear how quickly a similarity estimate would converge.
Nevertheless, when combined with the intuitive and technical
guidance of the equivalence relations Def. 3 and Def. 11, such
a sampling method has the potential to practically measure

distances between games, without sensitivity to cosmetic
variations in the rule descriptions, and with minimal input
from ludologers. We look forward to exploring this and other
game similarity measures in future work.

ACKNOWLEDGMENTS

We thank Stephen Crane, Marquita Ellis, Ryan Janish, Will
Johnson, Kiran Lakkaraju, Kweku Opoku-Agyemang, Stephen
Phillips, and Ben Wormleighton for useful discussions. We
also thank Vlaada Chvátil for designing Mage Knight [24], the
board game that inspired this research. This work is supported
in part by the Office of Naval Research under the Embedded
Humans MURI (N00014-13-1-0341) as well as a Philippine-
California Advanced Research Institutes (PCARI) grant.

REFERENCES

[1] G. N. Yannakakis and J. Togelius, Artificial Intelligence and Games.
Springer, 2018.

[2] E. Melcer, T.-H. D. Nguyen, Z. Chen, A. Canossa, M. S. El-Nasr, and
K. Isbister, “Games research today: Analyzing the academic landscape
2000-2014,” in Proc. 10th Int. Conf. Foundations of Digital Games, 2015.

[3] E. Melcer and K. Isbister, “Toward understanding disciplinary divides
within games research,” in Proc. Int. Conf. Foundations of Digital Games.
ACM Press, 2017.

[4] K. S. Tekinbaş and E. Zimmerman, Rules of play: game design
fundamentals. MIT Press, 2003.

[5] R. Koster, A theory of fun for game design. Paraglyph Press, 2005.
[6] E. Adams and J. Dormans, Game mechanics: advanced game design.

New Riders, 2012.
[7] J. Schell, The art of game design: a book of lenses, 3rd ed. Taylor &

Francis, 2019.
[8] G. Engelstein and I. Shalev, Building blocks of tabletop game design:

an encyclopedia of mechanisms. Taylor & Francis, 2019.
[9] P. Riggins and D. McPherson, “Tools for mathematical ludology,” 2019,

arXiv:1912.03295 [cs.AI].
[10] B. Cousins, “Elementary game design,” Develop Magazine, pp. 51–54,

2004.
[11] R. Koster, “A grammar of gameplay,” 2005, Game Developers Conf.
[12] B. Stéphane. (2006) A game grammar. [Online]. Available:

http://www.stephanebura.com/diagrams/
[13] C. Browne, “Modern techniques for ancient games,” in 2018 IEEE Conf.

Computational Intelligence and Games (CIG). IEEE, 2018.
[14] R. Cooper, D. V. DeJong, R. Forsythe, and T. W. Ross, “Communication

in coordination games,” Q. J. Econ., vol. 107, no. 2, pp. 739–771, 1992.
[15] P. J. Hammond, “Beyond normal form invariance: First mover advantage

in two-stage games with or without predictable cheap talk,” in Rational
Choice and Social Welfare. Springer, 2008, pp. 215–233.

[16] J. Beck, Combinatorial games: tic-tac-toe theory. Cambridge University
Press, 2008.

[17] E. Rasmusen, Games and information: an introduction to game theory,
4th ed. Blackwell Pub, 2007.

[18] É. Piette, D. J. N. J. Soemers, M. Stephenson, C. F. Sironi, M. H. M.
Winands, and C. Browne, “Ludii - the ludemic general game system,”
2019, arXiv:1905.05013 [cs.AI].

[19] M. Thielscher, “A general game description language for incomplete
information games,” in Proc. 24th AAAI Conf. Artificial Intelligence, ser.
AAAI’10. AAAI Press, 2010, pp. 994–999.

[20] N. Love, T. Hinrichs, and M. Genesereth, “General game playing: Game
description language specification,” Stanford Logic Group, Computer
Science Department, Tech. Rep. LG-2006-01, 2006.

[21] M. Thielscher, “GDL-III: A description language for epistemic general
game playing,” in Proc. 26th Int. Joint Conf. Artificial Intelligence, ser.
IJCAI’17. AAAI Press, 2017, pp. 1276–1282.

[22] J. Kowalski, M. Mika, J. Sutowicz, and M. Szykuła, “Regular
boardgames,” Proc. AAAI Conf. Artificial Intelligence, vol. 33, pp. 1699–
1706, 2019.

[23] G. Bonanno, “Set-theoretic equivalence of extensive-form games,” Inter-
national Journal of Game Theory, vol. 20, no. 4, pp. 429–447, 1992.

[24] V. Chvátil, Mage Knight. WizKids, 2011, board game.

