An Intelligent Storytelling System for Narrative
Conflict Generation and Resolution

Youngrok Song
Department of Al
Sungkyunkwan University
Suwon, South Korea
1d2thomas @gmail.com

Byung-chull Bae

School of Games

Hongik University
Sejong, South Korea
byungchull @ gmail.com

Abstract—Conlflict is essential for the development of complex
plots or more in-depth character design. Therefore, many literary
works have employed a conflict-centered narrative structure.
However, it is challenging to incorporate conflicts in a planning-
based story generation because a planning algorithm constructs
a plan that avoids conflicts, which can occur when one action
negates the precondition of the other character’s action. To
address this issue, this paper presents an intelligent storytelling
system that can automatically generate conflicts and their resolu-
tions using the interleaved causal relationships between different
characters in the story. We describe an example to show that
the proposed algorithm can successfully generate a story that
contains inter-personal conflicts and is presented in the Virtual
Environment. We conclude with a discussion and future study.

Index Terms—Narrative Generation, Conflict, Planning,
Causal Threats

I. INTRODUCTION

A common definition of narrative is “representation of a
sequence of events” [11], where events can involve the change
of states by an agent’s actions. As game agents (or characters)
perform actions to achieve the given goals, conflicts - either
interpersonal or intrapersonal - is essential to create an inter-
esting story.

Conflict in narrative refers to “the struggle in which the
actors are engaged”, which can be either external (e.g., pro-
tagonists fighting against fate or destiny, conflicts between
protagonist and antagonist due to various reasons such as
different beliefs or values, different goals or the same goals
but with limited resources) or internal (e.g., protagonist’s inner
conflict between good and evil) [9]. Conflict is critical for dis-
tinguishing “narrative” from “non-narrative” - in other words,
narrativity [9], where conflicts are consisted of “discrete,
specific, and positive situations and events, and meaningful
in terms a human(ized) project and world” [9].

Conflict is essential for the design of a plot in the story.
In his book [5], McKee juxtaposes the story with life, as

978-1-7281-4533-4/20/$31.00 ©2020 IEEE

Hyunju Kim
College of Computing
Sungkyunkwan University
Suwon, South Korea
julia981028 @ gmail.com

Taewoo Yoo
College of Computing
Sungkyunkwan University
Suwon, South Korea
wo00990307 @naver.com

Yun-Gyung Cheong
Department of Al
Sungkyunkwan University
Suwon, South Korea
aimecca@gmail.com

a good story reflects our real life in which conflicts always
occur. McKee categorizes narrative conflict more in detail with
three levels - inner, personal, and extra-personal for different
types of plot such as “stream of consciousness”, “soap opera”,
and “action/adventure” [5, p.213], respectively. Through the
combination of different types of conflict, plots can become
deeper and richer. For instance, the computational model in
[4] generates a suspenseful story by rearranging a story plan
that contains a conflict already.

While conflict is crucial for story development, only a
few studies [12] [13] [14] have paid attention to it. Szilas
has developed IDtension [12], an interactive story generation
system based on the computational model of actions and
obstacles in order to increase dramatic tensions between story
characters. Ware and Young [14] presented CPOCL (Conflict
Partial Order Causal Link) algorithm to support narrative
conflict based on the previous partial-order causal link (POCL)
planning algorithm. CPOCL creates conflicts by preserving the
causal links that are threatened by other actions, still being able
to generate a sound plan by marking those causally threatened
steps as non-executed by adopting the notion of “character in-
tentions” and “intention frames”. With the CPOCL algorithm,
however, plans that are free of conflicts can also be generated.

In this paper, we explore how conflicts can be formally
defined and generated using a plan-based approach, which
has been employed for (interactive) narrative generation [6]
[1] (3] [7] [10] [2]. Planning in general is a problem-solving
technique, consisting of a planning problem (i.e., initial state
and goal specification) and a planning domain (i.e., objects,
predicates, and action operators). Given the input of a planning
problem, a sound planner produces a solution or a plan, that
is, a sequence of actions with which all the specified goal
conditions can be achieved without any causal threats.

The main contribution of this paper is to present a system
that generates a story with conflict and its resolution, which
is realized in an interactive virtual environment.

planning problem

|

Conflict Generator

i

Story DBMS

planning problem

Resolution Generator

.

Story
State

Conflict
Planner

Condition
Checker

=
L~

1 plan

| current

story
plan

Soundness
Checker

Story
Actions

| state
story
plan

* ———— -

POCL Planner

i

tory actions

— -
S

Execution Manager

|

[Game Engine (Unity)]

VR Manager

Fig. 1. A system overview (Dotted arrow in red color denotes that a conflict occurs.)

II. OUR APPROACH

This section describes our approach and an overall archi-
tecture of the proposed system.

A. System Overview

Our system comprises three main modules - Conflict Gen-
erator, Resolution Generator, and VR manager. Conflict Gen-
erator is a story planner that generates story plans which
contain conflicts; a conflict in this paper denotes a situation
where a character’s action threats the causal link established
by another character. Resolution Generator is a POCL planner
which generates a story plan with a conflict resolution in it. VR
Manager is a module that retrieves story actions from story
DB and automatically executes them on a virtual environment
using a game engine such as Unity.

In our system, we mostly make use of the POCL planning
formalism and algorithms for the generation of story actions
that can include either conflict or resolution. A POCL plan is
represented as a four-tuple (S, B,C,O), consisting of plan
steps (5), binding constraints (B), causal links (C), and
ordering constrains (O). A causal link is a link between two
steps A and B in the plan when A establishes the precondition
p of B and is written as A — B. A conflict with the causal
link can occur when a step C' has the effect that unifies with
the negation of the condition already established, —p , in our
case. An ordering constraint takes the form of A < B denoting
‘A occurs before B’. Unlike a total-order plan where all the
steps in the plan are ordered, ordering constrains in partial-
order planning are added only when necessary. A solution
(i.e., a plan) in partial-order planning is a sequence of steps
(having partial ordering) that will achieve the goal state when
executed in the initial state. In this paper we did not take
binding constraint into account.

An overall process of generating conflict and resolution is
illustrated in Figure 1. First, a planning problem consisting of
the initial state and the goal state is given to both the Conflict
planner and the POCL planner. Next, each planner generates a
plan; Conflict planner generates an unsound plan that contains
conflicts in it. The POCL planner builds a sound plan that
contains no cycles in the ordering constraints and no threats
with the causal links.

Among different types of narrative conflict, this paper
proposes a planning algorithm to create inter-personal conflicts
by making modifications to the POCL planner [8].

B. Conflict Generator

Conflict Generator modifies a partial-order planner in which
the search algorithm looks for plans with conflict for a given
planning problem with partially described ordering of actions.
In this paper, a conflict is defined as a causal threat where
one character’s action can negate the precondition of the other
character’s action. Conflict Generator is composed of two sub-
modules - Conflict Planner and Soundness Checker.

Unlike conventional POCL planners, the Conflict Planner
manipulates threats differently for the purpose of conflicting-
story generation. The algorithm initially builds an empty plan
that contains Start and Finish steps. Then, it generates child
nodes by refining the current partial plan. The refinement
process includes causal planning and threat manipulation. The
causal planning follows the original POCL algorithm [15],
which creates causal links to establish open preconditions.
However, the threat manipulation performs in a different man-
ner. When the threatening or threatened actions (that prevent
a character from achieving his or her goal) are performed
by another character, the algorithm manipulates the ordering
of the threats to ensure that conflicts occur. As a result,
a character’s actions to achieve a goal is threatened (i.e.,

Algorithm 1: The Planning Algorithm.

Result: A plan P = (S, B, C, O),where S denotes plan steps,
B denotes binding constraints, C denotes causal links,

and O denotes ordering constraints.

Initialization: The initial plan contains Start and
Finish steps, the ordering constrain Start < Finish,
and all the preconditions (i.e., goal conditions) in
Finish as open preconditions. An open precondition
refers to a precondition that is not achieved by some
steps in the plan.

Termination: If the plan is consistent and contains no
open preconditions, terminate and return the plan.

Plan Refinement: Non-deterministically do one of the
following.

1. Causal Planning:

(a) Select an arbitrary open precondition of a step
S1.

(b) Add a step S2 that achieves the condition. If no
such step exists, backtrack. Otherwise, add the
binding constraints required for the conditions to
unify, an ordering constraint S2 < S1 that orders the
new step S2 before S1, and the causal link
S2 — S1. The step S2 can be either an existing
step in the plan or a new step that is instantiated
operator which has an effect that can be unified with
the precondition to the step of the open precondition.
If S2 is a new step, add it to S and the ordering
constraints Start < S2 and S2 < Finish that orders
it between Start and Finish.

2. Threat Manipulation: Find any step S3 that might
threaten to undo any causal link S1 - S2 where p
is a precondition of S2.

for every such step do
if the threatening action and the threatened

actions are taken by same conflicting characters

then

Non-deterministically do one of the following
to resolve conflicts with causal links:

(a) Promotion: If possible, add the ordering
constraint S2 < S3 to order the threatened
steps to occur before the threat in the plan.

(b) Demotion: If possible, add the ordering
constraint S3 < S1 move the threatened steps
to occur after the threat in the plan.

(c) Separation: If possible, add binding
constrains on the steps involved so that no

conflict can arise.
else

Create conflicts with causal links by adding the
ordering constraints S1 < 53 and S3 < 52
that order the threatening step between the
threatened causal link’s source and destination
steps.

end

end

Algorithm 2: Determining Same Conflicting Character
in Causal Threat.

Result: Boolean SameChar where True means same
conflicting characters in threatening and threatened
action of given causal threat.

Input: Causal Threat with threatened causal link
S1 — 53 and threatening action S2. Conflicting
Characters C'C.

Determination: Initialize SameChar to True.

if 51,53 taken by same character in CC and S2
taken by different character in C'C' then
| SameChar = False

else if S1 not taken by character in CC and 52,53
taken by different character in CC' then
| SameChar = False

else if S3 not taken by character in CC and S1,52
taken by different character in CC' then
| SameChar = False

thwarted) by another character’s actions. We excluded the
threats that are taken by the same character, as it can produce
some inconsistent or absurd actions (e.g., repeatedly making
negating or negated actions by the same character). This can
prevent the suggested algorithm from generating unnecessary
flaws in the resulting plan.

To ensure that the generated plan contains conflict, only
unsound plans (i.e., plans with threats to causal links by
another character) are selected. Because the algorithm enforces
inter-personal threats only, the unsoundness in the plans are
derived from ignoring inter-personal threats. As a result, the
actions that fail to be executed can be viewed as the points
of conflict between the characters. Soundness Checker sub-
module confirms this kind of conflict from the generated plans,
and then writes those unsound plans (including unsound ac-
tions, the initial state, and the goal state) into Story Database.

C. Resolution Generator

The story plan containing conflicts cannot be fully exe-
cuted in the virtual environment because some actions in the
plan may have conditions that are not established. Therefore,
Conflict Checker monitors whether the current state of the
story can assure the execution of the next action by inspecting
the preconditions of the next action retrieved from the Story
Actions table. Only the actions approved as executable by the
Condition Checker are executed in the virtual environment.

When the system detects an action that cannot be executed
because its preconditions are not established as described in
Algorithm 3, the system asserts that a conflict occurs and
considers the action as the point of conflict. Then, it marks
all the actions in the Story Actions table that are not yet
executed at this point as invalid. Next, Resolution Generator
creates a planning problem where the initial state is the state
recorded in the database and the goal state is same as in
the original planning problem. A solution to this planning
problem is generated using the POCL planner. The actions

of the solution are marked as safe and are appended to the
Story Actions table in the database.

Algorithm 3: Resolution Generator
Result:
Input: Story Database with plan P, state .S and goal
state G.
Initialization: All actions in P is marked as Valid.

while S not reached G do

Get next valid action A in P

if S satisfies precondition of A then
Apply A to S

Update story database with updated S
Mark A as Executable(safe)

else
Mark A as point of conflict

Mark remaining actions from P as Invalid

Create planning problem PP using S as initial
state and G as goal state

Generate sound plan with original planner by
solving PP

Append generated plan actions to P and mark
them as Executable(safe)

end

D. VR Manager

The VR Manager consists of Execution Manager and the
Unity Game Engine (version 2019.2.12f1). The Execution
Manager of the VR Manager module controls the character
behavior in the VR envinronment. This retrieves the next
action marked as executable in the story action table of the
database and sends this to the VR game engine for realization.
Then it marks the action as executed in the story actions table.

III. AN EXAMPLE

This section presents an example story to illustrate the
conflict creation process. Table I shows the planning problem
that contains the initial and the goal state. The initial state
represents that the characters in the story A and B both need
a recently released digital game title, which is in stock at a
computer game shop. In the goal state both A and B purchased
the game, B refunded the game, and A owns the game, and
the game is no longer in stock.

TABLE I
A SAMPLE PLANNING PROBLEM.

Conditions
(instock latest_game)(need A latest_game) (need
B latest_game)

Initial State

Goal State (purchased B latest_game) (purchased A lat-
est_game)
Characters A B

TABLE II
A SAMPLE PLANNING DOMAIN.
Operator Name Condition Type Conditions
purchase(?c, 7p) precondition (instock ?p) (need ?c ?p)
(not (purchased ?c ?p))
effect (own ?c ?p) (not (instock
?p)) (purchased ?c ?p)
find_spare(?c, 7p) precondition (own ?c 7p) (need ?c ?p)
effect (not (need ?c ?p))
refund(?c, ?p) precondition (own ?c ?p) (not (need ?c
’p)
effect (instock ?p) (refunded ?c
7p) (not (own ?c ?p))

A. Plan Domain

Table II defines a set of plan operators used in this study.
Its preconditions define the conditions that must be established
before the action is executed. The effects are conditions that
are made true after executing the action.

The purchase(?e,?p) operator denotes the character
bound to the variable ?¢ purchasing the product ?p. To
execute the step, the product that is bound to 7p should be
in stock, the character that is bound to 7c needs to purchase
the product and has not purchased the product yet. After
executing the purchase action, the effects are changed to
state that the character has the product, the product is not
in stock, and the character purchased the product. Likewise,
the find_spare(?c,?p) operator represents that the character
finds out that the product is obtained by another family
member, and therefore the character ?c no longer needs the
product. The refund(?c,?p) operator represents that the
character ?c returns the product 7p.

B. Resulting Plans

| Initial State

need(Blatest_game) in_stock(latest_game) need(A latest_game)

| purchase(B,latest_game)

purchased(B latest_game) own(B,latest_game) T1in_stock(latest_game)

find_spare(8 latest_game)

“Ineed(B, atest_game)

refund(B,latest_game)

refunded(8,latest_game) “Town(B,latest.game) in_stock(latest_game)

| purchase(A latest_game) |

own(A latest_game) purchased(A latest_game) ~1in_stock(latest_game)

latest_game) latest_game) own(A latest_game) purchased(Alatest_game) ~lin_stock(latest_game)

Goal State

Fig. 2. A plan generated using the original PyDPOCL (Decompositional
Partial Order Causal Link planner implemented with Python). The ordering
constraints proceed from the top to the bottom.

I Initial State

need(B,latest_game) in_stock(latest_game) need(A latest_game)

need(B,latest_game) in_stock(latest_game)

purchase(B latest_game)

own(B latest_ game) purchased(B,latest_ game) ~1in_stock(latest_game)

v -

own(B latest_game) purchased(B,latest_game)

in_stock(latest_game) need(A latest_game)
find_spare(B, latest_game) |

need(8, atest_game) purchase(A latest_game)

“lin_stock(latest_game) purchased(A latest_game) own(A latest_game)

own(B,latest game) “need(latest_game,B)

| refund(B,latest_game)

refunded(B latest_game) 71own(B latest_game) in_stock(latest_game)

refunded(B,latest_game) ~Town(Blatest_ game) Tlin_stock(latest_game) purchased(A latest_game) own(A latest_game)

Goal State |

Fig. 3. A plan generated using the proposed algorithm which enforces causal
threats (denoted by dotted lines). As a result, the character A attempts to
purchase the game title when its precondition is not established, which we
call conflict in this study.

Figure 2 illustrates a sound plan that is generated using the
PyDPOCL planner, the Python version of DPOCL (Decom-
positional Partial Order Causal Link) planner'. The plan does
not include the decomposition functionality of the planner, as
our focus is on its characteristics as a partial-order planner
that utilizes the causal relationship in the plan. In the plan,
the character B purchases the game title, finds a spare, and
then refunds it. Then, A purchases the game title when it is
in stock after B refunds it. As shown in the figure, a sound
solution that has no conflicts can be generated with the given
planning problem.

On the other hand, Figure 3 shows an unsound plan
that contains conflicts, which is generated by Conflict Gen-
erator. In the figure, the conflicts are denoted by dot-
ted lines; purchase(B,latest_game) threats the causal link
Init — purchase(A,latest_game) by undoing the effect
in_stock(latest_game) that establishes the precondition of
the purchase action taken by A. As a result, A’will fail to take
the purchase action. Another conflict occurs when B refunds
the game after A purchases it by negating the precondition of
the goal step, —in_stock(latest_game).

C. Realization

To realize the generated story via the VR environment, the
plan actions shown in Figure 3 and its initial state are recorded
in the story database. Then Resolution Generator and VR
Manager are executed. The Resolution Generator program’s
story state is initialized with the state recorded in the database.

Each action in the database has an execution flag value,
which indicates whether it can be executed or not. When the
story actions are added to the Story Actions database, all the

Thttps://github.com/drwiner/PyDPOCL

actions’ flags are set to ‘P’ denoting that it is pending to be
checked by the Resolution Generator module. If the module
determines an action as safe, the flag is set to ‘S’ denoting safe
for execution; otherwise, the flag is set to ‘E.” Then it updates
the story state applying the action’s effects to the current story
state. The VR Manager can only present the actions that are
flagged as ‘S.” After presenting the action, its flag is updated
to ‘E’

Story Actions Flag
purchase (B,latest_game) E
—
\
find_spare (B,latest_game) | } Conflict
Resolution Generator
refund (B,latest_game) | Ignore
find_spare (B,latest_game) P
refund (B,latest_game) P
purchase (A, latest_game) P

Fig. 4. Plan Resolved by Resolution Generator. Red column indicates conflict
generating action. Blue columns denote sound plan actions generated by
POCL planner of Resolution Generator.

Figure 4 illustrates when a conflict has occurred. When
Resolution Generator detects an action that generates conflict,
its flag is set to ‘C’ denoting conflict. All the following actions’
flags are set to ‘I’ to be ignored by the VR Manager. In order
to resolve the conflict, a new modified planning problem is
created utilizing the state in the database as its initial state.
A new sound plan is generated by the POCL planner in
Resolution Generator with the modified planning problem.
Generated plan actions are then appended to the database with
its actions’ flags set to ‘P’

When the VR Manager detects a conflict flag, it notifies the
viewer that a conflict has occurred and specifies which action
has been attempted. Figure 5 shows a VR screenshot when a
conflict occurs. A video footage describing this example can
be accessed via the link at https://youtu.be/gd 1 wHpmlpfY.

= o Py

Conf| h?as Occurred - purchase,a,tegt_game

Fig. 5. VR screenshot and Story DB when a Conflict occurs

IV. CONCLUSION

This paper address a computational model of conflict
generation for storytelling. To create inter-personal conflicts,
we present an intelligent story generation system based on
Al planning algorithms. The system consists of three main
modules: Conflict Generator, Resolution Generator, and VR
Manager. When a planning problem given, Conflict Generator
generates conflicts by manipulating the causal links in the plan
using a proposed algorithm that modifies the POCL (partial-
order Causal Link planner) algorithm [15]. When a conflict
occurs, Resolution Generator leverages the original POCL
planner [15] to generates a complete story that eliminates the
conflicts to achieve the goal as stated in the planning prob-
lem. The VR Manager retrieves the story from the database
system and realizes the story in the VR environment using
the Game Engine. We implement the system and generate a
simple example to show that the algorithm can successfully
generate a story plan that contains conflicts arising from the
interleaved causal relationships among characters in the story.
We implemented the system to realize the example story in a
VR environment.

In the future, we will carry out formal evaluations to show
the efficacy of the proposed approach. Currently, the system
can generate a linear story. We will extend the system to allow
the user to interact with the VR environment.

ACKNOWLEDGEMENT

This research was partly supported by Basic Science
Research Program through the National Research Founda-
tion of Korea(NRF) funded by the Ministry of Educa-
tion(2019R1A2C1006316), the Ministry of Science and ICT
(2017R1A2B4010499), and the Institute of Information com-
munications Technology Planning Evaluation(IITP) grant
funded by the Korea government(MSIT) (No.2019-0-00421,
Al Graduate School Support Program).

REFERENCES

[1] Cavazza, M., Charles, F., Mead, S.J.:
storytelling. IEEE Intelligent Systems 17(4),
https://doi.org/10.1109/MIS.2002.1024747

[2] Cavazza, M., Young, R.M.: Introduction to Interactive Storytelling, pp.
1-16. Springer Singapore, Singapore (2016)

[3] Charles, F.,, Lozano, M., J. Mead, S., Fornés, A., Cavazza, M.: Planning
formalisms and authoring in interactive storytelling. Proceedings of
TIDSE 3 (01 2003)

[4] Cheong, Y., Young, R.M.: Suspenser: A story generation system for
suspense. IEEE Transactions on Computational Intelligence and Al in
Games 7(1), 39-52 (2015)

[5] McKee, R.: Story. Mathuen (1998)

[6] Michael Young, R.: Notes on the use of plan structures in the creation
of interactive plot (12 1999)

[7]1 Michael Young, R.: Story and discourse: A bipartite model of narrative
generation in virtual worlds. Interaction Studies - INTERACT STUD 8
(01 2007). https://doi.org/10.1075/is.8.2.02you

[8] Penberthy, J.S., Weld, D.S.: Ucpop: A sound, complete, partial order
planner for adl. pp. 103—114. Morgan Kaufmann (1992)

[9] Prince, G.: A dictionary of narratology. University of Nebraska Press,

Lincoln, Neb., rev. edn. (2003)

Riedl, M.O., Young, R.M.: Narrative planning: Balancing plot and

character. CoRR abs/1401.3841 (2014)

Character-based interactive
17-24 (July 2002).

[10]

(11]

[12]
[13]

[14]

[15]

The
01

Cam-
2007).

Ryan, M.L.: Toward a definition of narrative.
bridge Companion to Narrative pp. 22-35
https://doi.org/10.1017/CCOL0521856965.002

Szilas, N.: Idtension: a narrative engine for interactive drama (09 2003)
Szilas, N., Richle, U.: Towards a Computational Model of Dramatic
Tension. In: Finlayson, M.A., Fisseni, B., Lowe, B., Meister, J.C.
(eds.) 2013 Workshop on Computational Models of Narrative.
OpenAccess Series in Informatics (OASIcs), vol. 32, pp. 257-
276. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany (2013). https://doi.org/10.4230/0OASIcs.CMN.2013.257,
http://drops.dagstuhl.de/opus/volltexte/2013/4164
Ware, S.G., Young, R.M., Harrison, B., Roberts, D.L.: A computational
model of plan-based narrative conflict at the fabula level. IEEE Trans-
actions on Computational Intelligence and Al in Games 6(3), 271-288
(Sep 2014). https://doi.org/10.1109/TCIAIG.2013.2277051

Young, R.M., Moore, J.D.. DPOCL: A principled approach
to discourse planning. In: Proceedings of the Seventh
International Workshop on Natural Language Generation (1994),
https://www.aclweb.org/anthology/W94-0302

