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Abstract—This article describes an attempt to categorize char-
acter configurations of players of Tom Clancy’s the Division 2,
conducted to highlight behavioral differences in approach to
gameplay based on one’s character build. Nine distinct character
builds were extracted for maximum coherence and minimum
variance and each build showed significant differences in separate
measures of behavior such as playtime, character health and
armor among other attributes. The proposed method was also
able to recover builds recognized by social forums as well as
discovering new ones. Appropriation of Character builds as
categorical text-based data (BaT: Build as Text), provides a
unique opportunity for game researchers to use a diverse set of
input data which will in turn contribute to the improvement of the
process of game design informed by player choices. Longitudinal
observations in interconnection of obtained clusters may provide
further insight into formation and evolution of gameplay types.

Index Terms—Player Modelling, Behavioral Analysis, Categor-
ical Clustering, Player behavior, Character Builds

I. INTRODUCTION

Popularity of video games in the recent years has made
the stream of player behavioral data more readily available
[1]. On the other hand, advancements in technology and
methods of analysis of such data has resulted in series of novel
approaches to classify and further analyze player data for a
myriad of purposes such as churn behavior and prediction [2],
identification of social influencers [3], exploration of emerging
game loops [4] and even AI agents with evolving personalities
[5]. Classification of player data, other than player churn
and retention behavior [6], could be used to increase player
efficiency in gameplay based on the choices afforded by
the game [7]. Such approaches could help game developers
to improve gameplay features and help them personalize
representation of options [8]. It may also diversify the under-
standing of players and their varied needs [9]. In this study,
we introduce the BaT (Build as Text) approach to categorize
player character configurations in Tom Clancy’s the Division
2 (TCTD2;Ubisoft, 2019), an online multiplayer shooter. We
explain the principle of our approach, that is encoding textual

descriptors paired with applying Latent Dirichlet Allocation
[10], and using Shannon Entropy [11] for allocation of data
points to clusters. We show the advantage of the proposed
method by comparisons made with conventional numerical
clustering approaches. As character builds are highly reflective
of playstyle, their categorization can be seen as a proxy to
categorization of player behavior. Therefore, performance of
the model in view of behavioral metrics such as health, armor,
skill power, offense, defense, utility and overall playtime
split is examined to show that the different discovered builds
are indeed representative of specific character attributes and
playtime behavior. Finally, we show that the BaT approach is
efficient in discovering both known (predefined) and unknown
(emergent) builds and further discuss implications, limitations
and avenues of future work.

II. BACKGROUND

Application of advanced statistical methods in processing
data generated by player behavior in video games has been
attempted before [2]–[6]. The current study argues that the
nature of data generated by player behavior may provide the
first clues about choosing the algorithm to treat them. In this
case, Latent Dirichlet Allocation algorithm [10] was utilized
for categorizing character configuration data from TCTD2,
encoded in text-like format, which proved more suitable than
conventional numerical approaches.

A. Behavioral modeling in Games

Player modeling is the study of computational models of
players in games [12]. As video games provide the unique
conditions of interactivity as well as affective simulation, the
dynamic nature of player behavioral data could be utilized
to gain insight into player preferences [12], understand the
underlying motivations for play [9], quality of the experience
[13], and to make adaptive games [14]. Other than business
applications of player behavioral modeling conventionally fo-
cused on player churn behavior and spending habits [15], and
experimental modeling for method development [16], design
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oriented clustering studies on large scale samples of players
of popular commercial video games are mostly focused on
numerical clustering methods such as k-means [17] and are
rarely conducted by industry practitioners [18] with context
dependent, high dimensional dataset such as the current study
[19]. Centroid-based clustering methods (e.g. k-means) have
been successfully used to classify player behavior [20] due
to their ease of use for large scale numerical values and low
time complexity [21]. However, previous research [7] showed
that they may not produce reliable results. Density based
clustering methods, although employed less frequently, have
also proven useful in modelling player behavior with reduced
dimensionality [22]. But as we will discuss in Section III-A2,
their dependence on the availability of pairwise distances
between data points makes them impractical for handling large
amounts of high dimensional data. Therefore, treatment of
special data types has led practitioners and researchers to
employ alternative methods. In one occasion [4] a sequence
clustering method was used to identify and categorize game
loops based on the frequency of repeated consecutive action
types in a video game. In another example, [2] treatment of
contextual time-series data was conducted with Dynamic Time
Warping and a series of other refined algorithms for evaluation
of game events. Other studies [31], [32], also used methods
similar to those of the current study when dealing with text
based data, although applied to player in-game chat logs or
tweets about a game, in order to categorize and uncover player
communications. Regardless of data type, the common thread
in clustering studies is the emphasis on the importance of
context not only in mining and interpretation of data [7] but
also in the methods that make sense of relationships between
these data points.

B. The Game

Tom Clancy’s The Division 2 (TCTD2) is the second
installment of an online multiplayer tactical shooter. The
game is fully online, even for solo play. The client software
is constantly communicating in-game telemetry to the game
servers, where players can meet and join, for cooperative
or competitive activities. Other than character’s aesthetics,
players can upgrade, unlock and modify their characters’
attributes, skills and equipment. Character attributes are pro-
gression dependent values of baseline characteristics such as
health, armor and skill power. Skills are special capacities,
unlocked by player progression. Equipment (a.k.a. loot), such
as weapons or armor pieces, is procedurally generated and
found during in-game activities. As a consequence, character
configurations are fine-tuned by players among a set of unique
possibilities that has combinatorial complexity. The choices
made in this superior cardinality space reveal player tendency
towards archetypal playstyles, while leading to a clustering
problem of high dimensionality.

C. Data

The dataset used in this study contained approximately
250000 character configurations. These configurations were

obtained from a special ’player status’ event that is sent by
the game client on game start (plus a few other conditions
that are not relevant here), using the built in telemetry system.
For this study, we used event data collected over a period
of 1 week (from 06.11.2019 to 13.11.2019). To reduce data
volume, we selected only the latest player status event for each
unique player ID, therefore keeping only the latest character
configuration snapshot of each player that was active during
that period.

The character configuration data point consists of features
that are sufficient to specify a character in the game (see
Table I) but do not describe explicitly behavior nor playstyle.
These character features can broadly be grouped into 4
categories: attributes (health, armor, skill power etc.), skills
(and skill variants), equipment (equipped weapons, gear etc.),
and specialization (specialized equipment and skills that go
together for a specific purpose. e.g. Sharpshooter specialization
for a sniper). Some features are numerical, while others are
categorical. The raw dataset contains 56 base features.

III. CLUSTERING

A. Numerical clustering methods

As an initial approach for identifying builds, we tried using
the more classical centroid-based and density-based clustering
techniques on the character configurations.

1) Centroid-based clustering: For k-means clustering, all
raw character configurations are encoded as numeric feature
vectors. A normalization step is applied on all the numeric
features to bring them on the same scale (0-1), whereas
categorical features are one-hot-encoded (OhE). The dataset
transformed in this manner contained over 7000 features, only
6 of which were non-binary. To reduce dimensionality, we
apply truncated singular value decomposition (tSVD), pro-
jecting it onto a subspace of 200 dimensions. This operation
retains about 70% of the variance in the encoded data. The
elbow method is then employed using the silhouette coefficient
[23] and the sum of squared displacements to determine the
optimal number of clusters. Clusters are visualized using tSNE
embedding [24] over a range of perplexity values.

2) Density-based clustering: Due to the necessity to pre-
compute a custom distance matrix, we could only afford to
perform density-based clustering on a small subset of the
original data. Therefore, we randomly sample 12k character
configurations from the original 250k. As in the case of k-
means, numerical features are first normalized to a range of
0-1. However, as our dataset contains a mixture of numerical
and categorical features, we need to use a distance metric that
can handle both data types. One such metric is the Gower
distance [24], which is a true metric and satisfies the triangle
inequality. As such, it can be used with DBSCAN [25], but
requires the pairwise distance matrix to be computed up front.
To obtain the ”best” (most compact) clustering results, we
perform a grid search over the DBSCAN parameters epsilon
and minimum number of points and maximize the silhouette
coefficient. Results are then visualized using tSNE embedding
over a range of perplexity values.



TABLE I
CHARACTER CONFIGURATION FEATURES

Feature category Feature Typea Example Description
Attributes Armor Numeric 100000 Armor rating

Health Numeric 200000 Health rating
Skill power Numeric 600 Effectiveness of skills

Offense Numeric 2 Overall offensive tier
Defense Numeric 13 Overall defensive tier
Utility Numeric 12 Overall skill tier

Skills Skills Categorical (multi - 2) ”Hive” The 2 skills equipped
Skill variants Categorical (multi - 2) ”Hive - revive” Modification of the base skills equipped

Equipment Weapons Categorical (multi - 3) “assaultrifle pof416 t2 v1” Names of the 3 weapons equipped
Weapon types Categorical (multi - 3) “Assault Rifle” Types of weapons equipped

Body slot items Categorical (multi - 6) “Diamondback gloves” Names of the 6 body slot items equipped
Item brands Categorical (multi - 6) “Gila Guard” Names of the brands of the 6 equipped items
Gear talents Categorical (multi - 18) “Clutch” Names of the gear talents equipped (up to 18)

Weapon talents Categorical (multi - 9) “Optimized” Names of the weapon talents equipped (up to 9)
Specialization Specialization Categorical (single) “Technician” Character specialization

Signature weapon Categorical (single) “Crossbow” Signature weapon used
aSpecifies whether the feature is numerical or categorical. In case of categorical features,
the brackets specify whether they are single-valued or multi-valued (and how many values are allowed)

B. The BaT Approach

1) Principle: In an industrial context, the produced clusters
have to be concretely used by game experts, having low to
no knowledge of data science methods and tools. Ease of
interpretation of the method’s output is thus key to adoption
of the overall solution.

The inherent limitations of numerical clustering methods
lie in either the necessity for encoding categorical features in
a numerical vector space (e.g. for k-means), or the need for
specialized distance metrics that can deal with both numerical
and categorical features - such as the Gower distance [24]
for DBSCAN - which hardly preserve semantic distance
between the original objects. Additionally, it is known that the
usual Minkowski distances (e.g. Euclidean) used to compute
similarity matrices do not behave well in high dimensional
spaces, a phenomenon commonly referred to as the curse
of dimensionality [26]. Therefore, in this paper, contrary to
the usual approaches, we propose a fully categorical-like
representation of a character configuration - which keeps our
representation space’s dimension relatively low - and apply
adapted clustering methods to this transformed dataset.

The core idea behind the BaT approach is that each charac-
ter configuration can be seen as a text document, composed of
a list of keywords describing how the character is customized
by the player. Here, inventory type elements, including both
weapons and gears, come together with skill elements as well
as specializations, to be merged into a single list. Numeric fea-
tures are transformed into categorical bins (see Section III-B2).

The level of description for the keywords should be selected
carefully, as it needs a good knowledge level of the core game
mechanics. For example, in TCTD2 the skill variant is more
important than the skill itself, because each skill variant has
quite different gameplay mechanics; e.g. the fixer drone heals
the player and stays close to him/her, while the assault drone
pro-actively attacks distant opponents. In contrast, the weapon
type (e.g. ”Assault Rifle”) is more important, in general, than

the exact weapon model (e.g. ”assault rifle pof416 t2 v1”),
the latter variants mostly not influencing the underlying func-
tion in the build. Those choices in granularity level of the
character configuration descriptors are driven by the concept
of a build and are specific to the game. In this study, once
base game mechanics have been well assimilated, the exercise
of choosing the relevant level of granularity was intuitive and
yielded comprehensive results.

Concretely, the list of keywords defining each character
configuration is encoded using a classical text frequency data
structure, and stored in a sparse matrix format, which makes
it efficient for handling very large volumes of data.

2) Numerical features encoding into tiers: Some minor
elements of a character configuration, taken individually, can
have a lesser influence on the build compared to its main
elements and are tedious to consider in a full equipment list.
However, when combined over all possible available slots in
an inventory, they can significantly impact some of the player’s
attributes. For example, gear mods in TCTD2 can buff up to
3 stats but with relatively low bonus values (e.g. critical hit
chance +2%, critical hit damage +3%, weapon handling +5%)
and only one attribute among offensive, defensive or utility.
Properly stacked over all the inventory, they start making a
difference and accounting for build intentions.

Data-wise, treating each piece of these minor modifiers
individually could clutter the main build characteristics into
a high number of low-relevance descriptors. To avoid this
issue, we capture the essence of the player’s optimization
intent, through measuring the consequences of equipping full
mods combinations. This is performed by computing the total
score in each of following three attributes: offense, defense,
and utility, as an integer number having values between 0
and a few 10s. Then we apply a quantile-based binning to
each of these numerical features. Values in the 0-75% quantile
range are encoded as low medium tier, and the values above
as high tier. Finally, we only keep the high tier instances
and discard all the others, because we are only interested in



salient characteristics of each character configuration. Indeed,
the low-medium tier values are expected to be the norm
among players, thus would be present in most data points
and would not carry meaningful information to differentiate
between builds.

3) Handling repetitions: It is common in Role Playing
Games (RPGs) that equipping the character with several pieces
of a same ’set’ provides powerful bonuses as a result of their
combination, which are clearly communicated to the player.
Those granted bonuses participate in the build construction
since they provide advantages to specific attributes, related
to different playstyles. For example, in TCTD2, a substantial
bonus to marksman rifle damage is provided when equipping
3 gear pieces of brand airaldi holding: it is highly probable
that players pursuing a sniper-like build will accordingly look
for these combination bonuses. Data-wise, we translate this
into a meaningful way for the clustering algorithm, during
the data encoding step. Specifically, we keep all repetitions of
the same gear element at brand level, without specifying their
inventory slot (e.g. mask, chest armor, or gloves). We also
discard the specific item names, since they have no influence
on obtaining said set bonuses. For a complete example of a
character configuration, see Table II.

TABLE II
EXAMPLE OF AN ENCODED CHARACTER CONFIGURATION

specialization sharpshooter,
weapontype marksmanrifle, weapontype marksmanrifle,
weapontalent breadbasket, weapontalent allegro,
weapontalent everlasting, weapontalent optimized,
weapontalent ranger, weapontalent stop drop and roll,
weapontalent talent exotic marksman mk1,
weapontalent talent exotic marksman mk1b,
weapontalent talent exotic marksman mk1 holstered,
brand airaldi holding, brand airaldi holding,
brand airaldi holding, brand airaldi holding,
brand alps summit armaments, brand wyvern wear,
skillvariant chemlauncher repair cloud,
skillvariant hive revive,
geartalent spark, geartalent vigilance,
geartalent composure, geartalent concussion,
geartalent hard hitting, geartalent opportunistic,
geartalent opportunistic, offense tier high,

4) Algorithm: We use Latent Dirichlet Allocation (LDA)
algorithm, which is a classical text clustering algorithm [10]. It
is very suitable to our purpose, since the clusters it produces -
also called topics - are provided as an ordered list of keywords
found in the dataset. The order of keywords for a given topic is
defined by their relative importance in said topic. This output
is extremely convenient for interpretation, since any non-data-
science-proficient person having a good knowledge level of
the game can make sense of these results and interpret each
ordered keywords list as a build.

Another advantage of this algorithm is that it produces
soft clusters instead of hard partitions of the data. In other
words, for each character configuration in the input dataset, we
obtain a probability distribution over all discovered topics (in
contrast to just being assigned a single topic). In our context,

this is advantageous because it enables us to obtain the most
representative character configuration for each cluster/build.
Examining the most representative configuration helps analysts
and game designers understand and interpret the build much
better than when looking at centroids obtained by numerical
clustering approaches, which may not represent valid character
configurations.

Furthermore, although classical topic modelling approaches
do not always create semantically meaningful topics, in this
work we apply them to keywords data and not natural lan-
guage. Application of LDA to this type of data is particularly
relevant, due to its underlying assumptions of probabilistic
distributions over words and topics, considered under the ’bag-
of-words’ paradigm.

Several implementations of LDA are available in the open
source ecosystem, most of them having excellent performances
in terms of computing time and memory. In this paper, we use
Python Gensim library [27], but other ones (such as Spark
MlLib) would yield similar results.

TABLE III
LDA ALGORITHM HYPER-PARAMETERS

Hyper-parameter Value
alpha ’asymmetric’1
eta ’auto’

chunk size 1000
passes 10

workers 12
1alpha=’auto’ not available when using Distributed=True.

Used values for hyper-parameters can be found in Table III.
We use the distributed variant of LDA to take advantage of
multi-core computers at our disposal, and control the random
seed for more reproducible results.

5) Selection of the number of topics: We try several values
for the desired number of topics, which has a major impact
on the results. To guide this exploration, we use topic co-
herence [28] as a measure of the quality of the resulting
clustering for a fixed number of topics. To do this, we run
the LDA algorithm over a range of values for this hyper-
parameter, then keep the top 2 or 3 peak values of topic
coherence as candidates for results analysis. This method
considerably alleviates the usual issues with selecting the
number of clusters, while keeping some flexibility concerning
its final choice (See the results in Section IV-B1).

6) Entropy Filtering: For statistical purposes, we allocate
each data point to a single cluster. To do this, we choose the
the most probable build according to LDA results (see Sec-
tion III-B4). But before this, for each data point we compute
the normalized entropy of the build distribution (as determined
by LDA) and apply a globally fixed threshold. Character
configurations having a normalized entropy value higher than
this threshold are considered having a too uncertain allocation,
thus are assigned to an additional ”Undefined” cluster.



IV. RESULTS AND DISCUSSION

A. Numerical clustering approaches

1) Centroid-based clustering: Our initial approach was to
encode a character configuration as a numerical vector and
apply standard clustering algorithms that work in numerical
feature spaces. Due to the many categories present in the
dataset (different skills, weapons, armor etc.), this operation
resulted in a representation that was mostly binary. As such,
it was unsuitable for space partitioning techniques such as k-
means as any results obtained bore little meaning.

2) Density-based clustering: As a second approach, we
applied a density-based clustering method. Although we were
able to re-discover known builds (see Section IV-B5), this
was only possible after we had significantly biased the dataset
by selecting features we assumed important for those known
builds. This approach, however, only reinforces what we al-
ready know about character builds and might preclude our abil-
ity to discover new, unknown builds. Overall, we concluded
that density-based clustering was not a suitable approach for
build identification in TCTD2.

B. BaT Approach

In this section we present and discuss the results obtained
by applying the BaT methodology described in Section III-B
to the dataset described in Section II-C.

1) Selection of the number of topics: As described in
Section III-B4, we ran the LDA algorithm with varying
number of topics between 1 and 20, and computed the C v
coherence [28] for each resulting model. In order to obtain
more accurate estimates, for each fixed number of topics we
ran modelling in triplicates and computed corresponding C v
coherence mean and standard deviation. The results are shown
in Fig.1. The whole process of the 3 x 20 LDA runs took no
more than 8644s on a HP Z4 G4 Workstation (12 core Intel
Xeon CPU @ 3.7GHz, 65 GB RAM).

Fig. 1. C v coherence as a function of the number of topics. Confidence
intervals show +/-1 standard deviation based on triplicate estimates.

Fig.1 shows that the global average maximum value for
C v coherence (0.417) was reached for 6 topics. However,
the representative keywords of these clusters were interpreted

by game experts as amalgamations of several builds, indicat-
ing that a higher value for this hyper parameter should be
preferred. Moreover, from their perspective, values between 8
and 12 were acceptable for a number of major builds in the
game’s ”meta”. Fig.1 clearly shows the appropriate value to
be 9, which we subsequently used for the rest of the analysis.

2) Entropy Filtering: We applied the method described in
Section III-B6, and used a threshold on normalized entropy
of 0.5, which led to labelling only 10% of all character
configurations as ”Undefined”.

3) Results for the chosen number of topics: The clusters
found for 9 topics are listed in Table IV. For each of them,
the characterizing keywords are listed in decreasing order of
relative importance. To keep verbosity low, we limited the
information shown in this table to the top 5 keywords, but
the game experts used up to top 15 keywords to interpret the
clusters. They attributed names to each cluster based on this
input and their knowledge of the game. Later on, this task was
said to be surprisingly easy, compared to previous attempts to
make sense of high level in-game data aggregations.

An exhaustive description of the 9 discovered builds would
be tedious, since their specificities are more related to the
game itself, rather than the method. To illustrate the proposed
methodology’s ability to produce easily interpretable clusters,
we hereafter detail two of them.

Build ID 0 is characterized by standard or exotic (a
class of rare and unique items in TCTD2) sub-machine
guns (”SMG”), together with brand sokolov gear and
gearset negotiators dilemma, both bringing high bonuses to
SMG damage, critical hit chance, and critical hit damage. This
combination is very powerful, and commonly known as the
SMG Sokolov build.

Build ID 2 is characterized by several armor elements
of gearset aces and eights and brand airaldi holding, giv-
ing bonuses to damage done with long-range weapons and
headshots. In this build, the main weapons are a standard
marksman rifle, or the ’Nemesis’ (a powerful exotic marksman
rifle that provides bonuses for long-distance and focused
shots). Moreover, this build mostly uses the ’sharpshooter’
specialization, and it shows a high offensive tier, well fitting
a ”glass cannon” playstyle. This is the Sniper build.

Next, we visualized how the discovered builds relate to one
another in terms of similarity and size. For this purpose, we
applied a Principal Component Analysis to the distribution of
keywords for each build, and plotted the projection onto the
first two principal components (see Fig.2). Although it is only
an approximation, it provides a useful overview of the relative
sizes and positions of clusters in build space. This visualization
also tends to confirm the results’ relevance, since neighbor
builds 0,4,7,8 share conceptual elements of playstyle, while
distant builds (e.g. 2) are indeed distinct in terms of use of
gear, weapons, and other attributes.

4) Clusters - Summary and Statistics: In order to better
understand the discovered builds and study behavioral differ-
ences between them, we computed in a post-modelling phase
various statistics and playtime metrics.



TABLE IV
CLUSTERS FOUND FOR 9 TOPICS - ORDERED KEYWORDS LISTS

ID Build Name Keywords
0 SMG Sokolov weapontype smg, weapontalent exotic chatterbox, brand sokolov, gearset negotiators dilemma, specialization demolitionist
1 Seeker Mine gearset hard wired, utility tier high, brand alps summit armaments, skill variant seekermine cluster,

geartalent exotic btsu
2 Sniper gearset aces and eights, brand airaldi holding, weapontype marksman rifle, weapontalent exotic nemesis,

specialization sharpshooter, offense tier high
3 Clutch brand douglas and harding, brand fenris group ab, weapontype assaultrifle, geartalent spark, offense tier high
4 Easy Exotic brand overlord armaments, weapontype rifle, weapontalent exotic lmg pestilence, weapontalent exotic rifle diamondback,

weapontalent exotic lmg
5 Gunslinger weapontalent exotic pistol liberty, geartalent exotic holster gunslinger, weapontype lmg, weapontalent unhinged,

brand petrov
6 Standard Raid gearset true patriot, gearset ongoing directive, weapontype assaultrifle, weapontype lmg, offense tier high
7 Unbreakable brand gila guard, brand fenris group ab, defense tier high, brand badger tuff, geartalent patience
8 Casual Joe brand providence, weapontype assault rifle, weapontype lmg, brand alps summit armaments, skill variant turret assault

TABLE V
CLUSTER SIZES

ID Size Dataset percentage
-1 23423 9.9%
0 9336 3.9%
1 37491 15.8%
2 9815 4.1%
3 26996 11.4%
4 3472 1.5%
5 3652 1.5%
6 16163 6.8%
7 35733 15.1%
8 70687 30.0%

Fig. 2. 2D PCA projection of the nine-topic builds, labelled by build ID

Note: In tables V and VI, the cluster ID ’−1’ corresponds
to the ”Undefined” group, as described in Section III-B6.

Table V shows the number of character configurations
allocated to each discovered build (i.e. the Size), following the
method detailed in Section IV-B1, as well as the fraction of the
dataset it represents. From this table we can, for example, see
that build 8 is the most popular one among players, whereas
builds 4 and 5 are rarely utilized.

Table VI shows the main, game-oriented statistics of each
discovered build. The Build attributes columns of this table
show the means and standard errors of the 6 considered
attributes. The Playtime split columns show how players

of each build spend their gaming time: firstly, in terms of
the average fraction of time spent in a group vs. solo; And
secondly, in terms of the fraction of time spent in main
missions, dark zone (DZ), and other activities (exploration,
side-missions etc.). The last three columns sum up to 100%.

Group playtime is usually utilized to indicate the tendency
for social play [3]. We could argue that each build’s playstyle
comes with a different level of interdependence with other
builds, consequently making it more or less suitable for
increased social play. We can see for example that the ”Sniper”
build 2 shows a higher proportion of playtime in group than
any other build. It would fit the context of the game that the
less damage-resistant role of a sniper with a very high damage
output (see Table VI) would need a team to get less exposed to
close-quarter combat situations. More generally, the statistics
obtained for the builds are in accordance to their function,
gameplay style, and intended design.

5) Comparison with rules-based build assignment: To as-
sess the relevancy of the proposed method, and as a sanity
check, we tested whether BaT was able to recover at least a
subset of builds expected to be present from external sources
and game experts. Independently from BaT experiments, we
performed a simple rules-based build assignment on the same
dataset and compared the obtained results.

To do so, we manually defined 4 builds, well-known from
online forums and internal playtests. Each of them could
be assigned to a character configuration if and only if said
data point satisfied all of the predefined build’s conditions.
Therefore, each data point could be allocated to at most one
predefined build. When it was not allocated to any of them,
the character configuration was labeled as “Undefined”.

The 4 predefined builds were Sniper, Clutch, Unbreak-
able, and Seeker. More than 50% of character configurations
could not be assigned to any build in this manner (see
Table VII). We then closely inspected the 9-cluster results and
identified 4 builds that most resembled the 4 predefined ones,
based on their top descriptors (e.g. build with ID 7 from BaT
most resembles the Unbreakable build from manual assign-
ment etc.). The builds from the two clustering approaches were
then paired up accordingly, and a Jaccard similarity index was



TABLE VI
CLUSTER SUMMARY STATISTICS

Build attributes Playtime split
ID Health Armor Skill Offense Defense Utility Group Main DZ Other

score score power attribute attribute attribute play (%) missions (%) (%) activity (%)
-1 77.5±0.3 K 253.7±0.4 K 1240±8 7.57±0.02 6.74±0.02 4.78±0.02 41.7±0.2 40.9 2.4 56.7
0 87.3±0.5 K 241.2±0.5 K 858±10 8.15±0.03 6.59±0.03 3.70±0.03 41.2±0.4 39.3 2.4 58.3
1 61.3±0.2 K 228.4±0.2 K 3207±5 4.34±0.01 4.99±0.01 11.60±0.01 47.9±0.2 44.0 2.4 53.5
2 62.4±0.3 K 223.2±0.4 K 291±5 13.63±0.04 3.92±0.02 1.35±0.02 51.7±0.4 37.3 3.2 59.5
3 109.7±0.4 K 218.7±0.3 K 339±4 11.53±0.01 4.33±0.01 1.65±0.01 48.5±0.2 33.6 6.8 59.6
4 77.1±0.7 K 262.7±0.9 K 868±17 8.04±0.05 6.95±0.05 3.39±0.04 40.8±0.7 40.1 2.0 57.9
5 66.1±0.5 K 260.8±0.8 K 1000±16 8.39±0.04 6.80±0.04 3.98±0.04 41.1±0.6 41.0 1.5 57.5
6 65.1±0.2 K 227.5±0.3 K 1165±8 9.58±0.03 5.32±0.02 5.37±0.02 39.5±0.3 43.4 1.0 55.6
7 94.5±0.2 K 295.0±0.3 K 669±4 6.63±0.01 9.73±0.01 2.88±0.01 41.9±0.2 35.0 4.1 60.9
8 69.8±0.1 K 223.3±0.1 K 1115±4 6.80±0.01 5.43±0.01 4.49±0.01 36.7±0.1 42.1 0.9 57.0

The build attributes section shows the mean value of each character attribute within a build cluster and its associated standard error of the mean.
Playtime split shows the mean fraction of playtime spent in a group within a build cluster and its associated standard error of the mean. This is
supplemented by the fraction of activity spent playing main missions, dark zone (DZ), and other in-game activities. The last three sum up to 100%

computed for each of the 4 pairs in order to get an estimate of
the degree of assignment overlap. The results are presented in
Table VII. The relatively high overlap scores (especially for
the Sniper build: 45%) indicate that BaT was able to recover
known builds to a large extent.

TABLE VII
COMPARISON OF BAT CLUSTERING AND RULES-BASED BUILDS

Build Name BaT - Predefined - Jaccard
(Predefined) frequency (%) frequency (%) index (%)

Seeker 16 12 16
Unbreakable 15 13 23

Clutch 11 18 35
Sniper 4 9 45

We also quantified the overall match between the rules-
based clustering and BaT clustering results, without explicitly
defining build pairs as in the previous paragraph. For this we
used the adjusted random index (ARI) [29] and the adjusted
mutual information (AMI) [30] indicators. ARI and AMI
can be used to compare the degree of match between two
clustering results even when the number of clusters produced
by the two methods are not the same, which is the case in this
study. The obtained values of 0.21 and 0.16 for ARI and AMI
respectively, indicate a match that is better than random, but
not perfect (a score of 1.0 would indicate a perfect match).
This suggests that the BaT approach is capable of recovering
known builds to a good extent, thereby passing the sanity
check.

V. CONCLUSIONS

In this paper we dissected a case study in clustering inher-
ently categorical game data highly dependent on the context
and demonstrated a step-by-step method that encompasses
the full process and application of the proposed method,
from data collection and preparation to performance evaluation
in context and against external data (e.g. socially emergent
builds from game forums). We showed that the BaT method
is more suitable than k-means or DBSCAN in producing
comprehensive clusters. Our description of player behavioral

data reflected by playtime split and character attributes showed
that meaningful clustering of character builds results in rep-
resentation of different playstyles and behavioral profiles that
forms around their affordances. For data scientists, detailed
illustration of our method may help in replication, performance
improvement and incentive to experiment with less explored
methods. Determination of significant behavioral differences
between clusters also implies to game designers and scholars
to study emergent character configurations beyond player
performance metrics and encourage varied and personalized
playstyles by monitoring player choices, behaviors incorpo-
rated with them and what they imply for player evolution.
Furthermore, we can imagine this method being applied to
other RPG games that allow gathering similar type of data,
in order to better understand how players customize their
characters.

VI. LIMITATIONS AND FUTURE WORK

There are some limitations to this work, which open several
leads to improve and continue it. First, during the data collec-
tion step we kept only the last updated character configuration
by each player over the studied period. This might not be the
most relevant instance of a player build. Choosing alternative
ways to snapshot character configurations is a challenging
task as players tend to continuously modify them, whether
for pure exploration (theory-crafting) or regular improvements
(better gear found, levelling up, etc.). Finding better ways
to detect relative stability in character configurations, and
to study builds evolution in time and per player deserves a
more rigorous research work. Alternatively, monitoring the
evolution of successive clusterings after different title updates
could also lead to interesting insights concerning the game’s
meta evolution, i.e. how players adapt their builds to in-
game mechanics changes, new items/skills, and existing items
modifications for balancing.

Second, the categorical nature of the data makes the pro-
posed method quite sensitive to the artefacts that can appear
during data pre-processing. Beyond the pure necessities of
carefully crafting the data cleaning step, some very specific



and complex game mechanics can somehow clutter the ob-
tained clusters. This was the case in this study focused on
TCTD2, when dealing with a special class of end-game items
(e.g. the Exotics and Gear sets) that have unique properties
not found in usual gear. Developing adapted encoding steps
for these end-game specific items could lead to improved
results. Another limitation related to data encoding is that
the keywords in the learning dataset all have equal weight,
which is not necessarily the best option because of complex
interactions between different categories of character features.
In TCTD2, this is the case with some gear talents, that are
activated if and only if very specific conditions on attributes
are satisfied which the current encoding does not take into
account and could be a powerful driver or constraint for builds
crafting. Similarly, the presence of very common items among
the player base can skew the results. More research in this area
could lead to some improvements.

Another topic of interest is the design of accurate player in-
game performance indicators, not only based on completion
speed of main missions. Correlating such KPIs with builds
information would provide insights about the builds’ respective
strength, and that could also be followed over time and
per individual player. This would, in turn, provide relevant
information to game designers concerning the practical builds
efficiency, and potentially help them to perform early and
targeted game balancing adjustments.

Finally, the method still relies on human interpretation to
give meaning to the obtained clusters. Although eased because
of their characterization with simple keywords, this task is still
prone to potential errors and interpretation bias. Moreover, we
lacked game experts’ time to perform a detailed analysis of
the character configurations that were un-categorized because
of too high normalized entropy. This could help validating the
hypothesis that these data points correspond to hybrid builds.
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[5] C. Holmgård, M. C. Green, A. Liapis and J. Togelius, ”Automated
Playtesting With Procedural Personas Through MCTS With Evolved
Heuristics”, in IEEE Transactions on Games, vol. 11, no. 4, pp. 352-
362, Dec. 2019.
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[20] O. Missura and T. Gärtner, ”Player modeling for intelligent difficulty
adjustment”, In Proc. of the ECML-09 Workshop From Local Patterns
to Global Models, 2009.

[21] F. Baumann, D. Emmert, H. Baumgartl, and R. Buettner, “Hardcore
Gamer Profiling: Results from an unsupervised learning approach to
playing behavior on the Steam platform”, Procedia Computer Science,
vol. 126, pp. 1289–1297, 2018.

[22] S.-J. Kang, Y. B. Kim, T. Park, and C.-H. Kim, “Automatic player
behavior analysis system using trajectory data in a massive multiplayer
online game”, Multimedia Tools and Applications, vol. 66, no. 3, pp.
383–404, 2012.

[23] P. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis”, J. Comput. Appl. Math., vol. 20, no. 1,
pp. 53–65, 1987.

[24] J. C. Gower, “A General Coefficient of Similarity and Some of Its
Properties”, Biometrics, vol. 27, no. 4, pp. 857–871, 1971.

[25] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algo-
rithm for Discovering Clusters in Large Spatial Databases with Noise”,
in Proc. of 2nd International Conference on Knowledge Discovery and,
1996, pp. 226–231.

[26] R. Bellman, ”Dynamic programming”, Princeton University Press, 1984.
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