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Abstract—Online gaming is one of the most successful applica-
tions having a large number of players interacting in an online
persistent virtual world through the Internet. However, some
cheating players gain improper advantages over normal players
by using illegal automated plugins which has brought huge harm
to game health and player enjoyment. Game industries have
been devoting much efforts on cheating detection with multi-
view data sources and achieved great accuracy improvements by
applying artificial intelligence (AI) techniques. However, generat-
ing explanations for cheating detection from multiple views still
remains a challenging task. To respond to the different purposes
of explainability in AI models from different audience profiles,
we propose the EMGCD, the first explainable multi-view game
cheating detection framework driven by explainable AI (XAI). It
combines cheating explainers to cheating classifiers from different
views to generate individual, local and global explanations which
contributes to the evidence generation, reason generation, model
debugging and model compression. The EMGCD has been imple-
mented and deployed in multiple game productions in NetEase
Games, achieving remarkable and trustworthy performance. Our
framework can also easily generalize to other types of related
tasks in online games, such as explainable recommender systems,
explainable churn prediction, etc.

Index Terms—explainable artificial intelligence, cheating detec-
tion, online game, industrial application

I. INTRODUCTION

Online games are ubiquitous on modern gaming platforms,
including PCs, consoles and mobile devices, and span many
genres, including first-person shooters (FPS) [1], strategy
games and massively multiplayer online role-playing games
(MMORPG) [2], etc. Online gaming represents one of the
largest and fastest growing Internet business sectors in the
world. It has made the biggest advances by a big margin with
progressively more and more players from a variety of ages,
nationalities, and occupations getting involved with gaming
online.

Despite the great success of online gaming, the game
industries have suffered serious threats from game cheating
[3]. Game bots in MMORPG are automated programs that
reach the system kernel and perform continuously tough or
tedious tasks without requiring the rest periods that human
players require. Accordingly, game bots can easily achieve great
superiority over honest players, leading to the huge imbalance
in the in-game ecosystem. The perspective plug-in is common
in FPS, which adds several plug-in elements to interface game.
Players can get huge information invisible in the game and take

Who? Game designers, game experts …
Why? Trust/understand the model itself, gain 
domain knowledge …

Who? Game data scientists, engineers …
Why? Ensure/improve product responsibility, 
explore and debug the model …

Who? Players affected by model decisions …
Why? Understand their situations, verify fair 
decisions, receive response to appeal …

Who? Game operators, customer service …
Why? Inspect and punish cheating players 
with generated evidences and reasons …

Fig. 1: Diagram showing the different purposes of explainability
for game cheating detection sought by different audiences.

advantage of this to win the game. It causes unfair competition
and harms the honest players.

Game cheating detection remains one of the most urgent
problems that game publishers need to address. Over the last
decade, empowering games with artificial intelligence has
become a trend which unlocks the data modalities (tabular data
like character portraits, sequential data like behavior sequences,
image data like client screenshots, graph data like social graphs,
etc.) and enables multi-view solutions for cheating detection.
• Portrait view. [4] used a time series technique with a MLP

neural network model to discriminate human users from
game bots based on a set of discriminating portrait features:
some features are related to the player and other are related
to the game.

• Behavior view. [5] employed a combination of supervised
and unsupervised methods to detect game bots based on
user behavior sequences, considering the different behavioral
patterns between human players and game bots. An auto-
iteration mechanism was also designed for the concept drift.

• Graph view. [6] examined in-game transactions to reveal
real money trading (RMT) by constructing a social graph of
virtual goods exchanges in an online game and inferred RMT
transactions by comparing the RMT transactions crawled
from an out-game market.

• Image view. [7] developed a real-time automated wallhack
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detection system using Convolutional Neural Networks. By
using Class Activation Maps, the network finds suspicious
areas within a screenshot that improves the credibility of the
model’s performance and makes debugging datasets much
more efficient.

• Multi-view. [8] proposed a multi-view attention networks
(MVAN) for real money trading detection in online games,
which utilizes the strong expressiveness of portrait view,
behavior view and graph view data.

However, it is far from enough that AI models reach high
accuracy for game cheating detection. As mentioned in Figure 1,
different audience profiles in online games show great demands
for the explainability in AI models for cheating detection.

• Game operators and customer service pay more attention
on inspecting and punishing cheating players while asking
the question that could we give evidences or reasons that
this player is cheating or normal?

• Players affected by model decision may appeal to customer
service to understand their situations of being punished and
verify fair decision by receiving response with generated
individual model explanations.

• Game data scientists and engineers are responsible for
designing and delivering AI models and leverage AI explana-
tions to ensure and improve product responsibility. They also
simplify model development by exploring and debugging
models with local and global model explanations.

• Game designers and game experts can discover domain
knowledge and new functionalities by understanding and
trusting the model itself. More mechanism and intervention
can be designed and released to prevent the cheating.

Considering these highlighted above, the usefulness and
fairness of AI for game cheating detection will be gated by our
ability to understand, explain and control them. The field of
XAI has seen great potentiality since we desire the ability to
explain black-box models in understandable terms to a human.

The contributions of our study are three-fold:

1) To the best of our knowledge, this is the first work
that introduces the explainable multi-view game cheating
detection which applies XAI for cheating detection in online
games from different views.

2) We propose an explainable multi-view game cheating
detection framework (EMGCD)1 which combines cheating
explainers to cheating classifiers from portrait, behavior,
image and graph views to generate individual, local and
global explanations which contributes to the evidence &
reason generation and model debugging & compression.

3) We evaluate explainable multi-view game cheating detection
with real-world datasets. Extensive experiments show the
accuracy of classification and the rationality of explanation.
Numerous interesting and valuable findings have been
discovered and presented. Our work has been implemented
and deployed in NetEase Games and received very positive
reviews from the game operator teams.

1Data and code available here: https://fuxiailab.github.io/EMGCD/

The rest of the paper is organized as follows. We give
a comprehensive description of game data in Section II.
In Section III, we present the proposed EMGCD in detail.
Section IV presents the experimental results and Section V
presents the applications in practice.

II. GAME DATA

A. Logs in Online Games

Various activities performed by the players or state change
events of the clients are recorded in the form of structured game
logs through the servers. The logs consist of the following
information:

• Timestamp: when a specific activity or event occurs.
• Log ID: an ID that identifies the type of player activity

(hunting monster, trading virtual money, client screenshot,
etc.) or the state change event type (level up, virtual money
increasing or decreasing, mouse trajectory moving, etc.).

• Source player’s information: the player’s role ID, gender,
level, class, virtual money, knead face time and VIP, etc.

• Target player’s information: the target player’s information
if the player interacts with another player.

• Detailed information: depending on each activity or event
type, detailed information related to the activity or event.

We collect the game logs from Justice Online2 and Knives
Out Plus3, which are popular gaming products released by
NetEase Games4. Justice Online is one of the most successful
MMORPGs in China which created a breathing virtual world.
Knives Out Plus is a next-generation FPS which truly restored
the natural and built environment and incorporated more
Chinese elements in design. We have collected more than
400 billion different types of game logs from Justice Online
and Knives Out Plus which contain more than 60 million
character creation activities. The cheating players are identified
and labeled by NetEase Games’ operator teams. Considering
the privacy, the characters in our datasets are ensured by
anonymizing all personal identifiable information.

B. Character Portraits Construction

We build a universal game character portrait system from real-
time game logs which covers multiple different topics including
account information, device information, basis information,
social information, task information, gameplay information,
item information, money information, etc. We extract 523-
dimensional portraits from the character portrait system of
Justice Online. Examples and descriptions of character portraits
can be found in Table I.

C. Behavior Sequences Construction

Each player’s behavior sequence is composed of lists of
events ordered by time stamp which contain four features as
followed:

• Timestamp: when the specific event of the player occurs.

2https://n.163.com/
3https://hyp.163.com/
4http://game.163.com/



• Event ID: the current event conducted by a player, for
example, using a certain skill, obtaining a certain item,
etc. Examples and descriptions of player behaviors can
be found in Table II.

• Interval: the time interval in seconds that has passed
between the last and the current game event of a player.

• Level: the current game level for the players. The lowest
level of each player is 1 and the highest is raised regularly.

TABLE I: Examples of character portraits in Justice Online.

Portrait Name Portrait Description
physical_memory_size the size of computer physical memory

watch_movie_acm_pct_avg the cumulative average percentage of storyline watching
2w_d_avg_team_chat_cnt the daily team chats in the last two weeks

2w_d_avg_world_send_msg_cnt the daily world channel chats in the last two weeks
2w_d_avg_use_expression_cnt the daily average expression usage in the past two weeks

2w_task_giveup_rto the proportion of abandoned tasks in the last two weeks
2w_bl_task_rto the proportion of branch tasks in the last two weeks

1m_d_avg_pvp_time_rto the daily average pvp duration percentage in the last month
guild_fund the current guild funding

45level_f_bl_task_acm_num the total number of branch tasks completed before level 45
display_memory_localized_size the size of computer display memory

2w_equip_play_time_rto the proportion of equipment play duration in the last two weeks
2w_create_team_rto the proportion of teams created in the last two weeks

nie_lian_time the time spent pinching face for the first time
2w_equip_score_upgrade the equipment score upgraded in the last two weeks

2w_sjtx_time_rto the proportion of time spent in the SJTX task in the last two weeks

TABLE II: Examples of player behaviors in Justice Online.

Behavior Name Behavior Description Behavior Name Behavior Description
AntiAddiction anti-addiction UseMoney use money

Exp gain experience RefreshRanklistNormally refresh rank list normally
RpcCheat cheat by RPC FinishLoadingScene record the time of scene loading

AntiCheaterAcceleration cheat by acceleration GmSetForbidKey punished by gm setting
GetMoney get money LogSkillIntervalInfo record the skill interval
VipLogin login as VIP BGDSJ_RES finish the BGDSJ task

FashionClothesInfo put on fashion clothes TiLi use the energy
Chat send a message OnCheatMaxSpeed cheat to max speed

Figure 2 visualizes the behavior sequences of a cheating player
and a normal player in Justice Online, which gives us a general
idea of how behavior sequence looks alike. Each slot represents
an event, and different events are assigned different colors to
differentiate them. There are a total of 85,751 different events
in Justice Online and the average length of player behavior
sequences in Justice Online is 13,220. We sample behavior
sequences with a length of 200 and keep the events with a
frequency of top 800.
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(b) A normal player in Justice Online

Fig. 2: Visualization of the behavior sequence examples. The
behavior sequence of normal players shows more diverse than
that of cheating players.

D. Client Images Construction

For the game cheating detection task in Knives Out Plus,
we intercept the game client’s picture at the moment the player
shoots and kills the opponent, so that we could determine
whether the player has used a perspective plug-in based on
whether there are non-game elements on the screenshot. To
protect the privacy of players, we only take screenshots of
the resources in the game. The game client image example of
Knives Out Plus is shown in Figure 3.

Fig. 3: Visualization of the client image examples.

E. Social Graphs Construction

We construct four different types of graphs from the game
logs of Justice Online which include a transaction graph, a
friendship graph, a teaming graph and a chatting graph. They
are visualized in Figure 4 and build up a multi-relational graph.
Detailed social graph comparison can be seen in Table III.

The transaction graph shows assets exchange relations
between players in the virtual world. Edges indicate the virtual
currency of established transactions between players.

The friendship graph is built upon unidirectional friendship
in online games. A player can send an invitation to another
player and remove friends from his friendship lists.

The teaming graph is made up of collaborative relations
between players. A team is temporally formed with the same
goal and is disbanded after achieving the goal.

The chatting graph expresses the communication relationship
between players. A character can send a private message to
other players for individual communications.

(a) Transaction (b) Friendship (c) Teaming (d) Chatting

Fig. 4: Visualization of the social graph examples.

TABLE III: Social graph comparison in Justice Online.

Graph ||V|| ||E|| ||D|| directionality description
transaction 14,778 126,283 8.5453 directed assets exchange
friendship 26,202 141,303 5.3928 directed friendship
teaming 27,032 694,202 51.3615 undirected teamwork
chatting 14,136 143,763 10.17 directed message delivery



III. THE EMGCD

We present the explainable multi-view game cheating
detection framework (EMGCD) shown in Figure 5 which
contains three core modules: game data construction, cheating
classifiers and explainers, applications for audiences.
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Fig. 5: The proposed EMGCD framework.

Game data construction. As shown in Section II, game data
could be extracted from game logs and represented in many
different views e.g., tabular (character portraits), sequential
(behavior sequences), visual (client images), or graphical (social
graphs).
Cheating classifiers and explainers. The algorithm we em-
ploy for classification and explanation might depend on the
use-case, model type, data format, etc. We select the post-hoc
explaining for a given classifier that started with a black box
model and prob into it with a companion model to create
explanations. Table IV shows the classifiers and explainers
in our EMGCD framework. In practice, we appreciate the
explanations of these bold ones in front of the candidates.

TABLE IV: Cheating classifiers and explainers.

View Method
Classification

Portrait RF [9], XGBoost [10], LightGBM [11], CatBoost [12], etc.
Behavior CNN, LSTM, BLSTM, ABLSTM, Transformer [13], etc.

Image AlexNet [14], VGGNet [15], GoogleNet [16], ResNet [17], DenseNet [18], etc.
Graph GCN [19], GAT [20], etc.

Explanation
Portrait TreeSHAP [21], Anchors [22], LIME [23], inTrees [24], LORE [25], etc.

Behavior DeepExplainer [26], NLPExplainer [27], NLPLIME [23], etc.
Image GradientExplainer [28], CAM [29], Grad-CAM [30], etc.
Graph GNNExplainer [31], GraphLIME [32], etc.

The explainers attribute a tabular model’s prediction to its
features, attribute a sequential model’s prediction to individual
events, attribute a visual model’s prediction to its pixels and
attribute a graphical model’s prediction to its subgraphs. What’s
more, one explanation does not fit all and here we propose
three types of explanations.
• Individual explanation shows the explanations associated

with individual predictions (i.e. what was it about the features
of this particular player that made her be punished).

• Local explanation summarizes the local groupness from
individual explanations. We generally sample 2000 samples
and perform supervised clustering [21] over these samples
and find large number of very explanatory groups/clusters.

• Global explanation shows the entire predictive model to
the user to help them understand it (e.g. global feature
importance, whether obtained directly or in a post hoc
manner).

Applications for audiences. The black box model continues
to provide the accurate prediction while explanations help
improving human interactions/inspections. Explanation needs
vary depending on the type of the user who needs it and also the
problem at hand. We demonstrate several novel and practical
applications below which are successfully applied.

• Evidence and reason generation for the game operator
teams and customer service teams by exposing attributions.
They observe our generated individual explanation and judge
whether it is sufficient to form an evidence or form a causal
reason for game cheating. When a player makes a banned
appeal, they can show the model explanations as evidences
of cheating.

• Model debugging is helpful to many different audiences.
Data scientists/engineers can apply the model’s explanations
to discover spurious correlations and label leaks and make
timely adjustments to the model’s data or structure. As
for mis-predictions, they could attribute a model mis-
classification to the features which are responsible for it.

• Model compression. Feature attribution values are com-
monly used to identify the most important features used
in model prediction. We can employ these most important
features to perform model compression from the data
and structural level. For example, we use only the most
considerable portraits to train the tabular model, and only the
most important behaviors or fragments to train the sequential
model, and crop the unimportant image pixel areas to train
the visual model. By modifying training samples or features,
we use less data and smaller model structures to train better
models.

IV. EXPERIMENTS

A. Experimental Settings

We partition the datasets and obtain the non-overlapped
training set (80%) and testing set (20%) respectively. All the
models are trained on the training set, and we execute the grid
search strategy to locate the best parameters on validations
by 5-fold cross validation. We measure the performances on
the testing set with AUC (area under the curve) and ACC
(accuracy) for game cheating detection. The training time (for
all the training set), inference time (for all the testing set) and
explaining time (for one sample on average) are also recorded
for the computing efficiency comparison. We explain all the
models in different views and show many interesting findings
discovered from the explanations of the models with the best
performance.



B. Performance Comparison

Table V shows the performance comparison of the game
cheating detection among different competing methods. XG-
Boost achieves the highest AUC and ACC among all the
methods in portrait view. Transformer is optimal considering
AUC and ACC results among all the methods in behavior
view. GoogleNet outperforms other methods for game cheating
detection in the image view. Trade_GCN transcends other
methods for game cheating detection in the graph view. Table
V also demonstrates the significant training time, inference
time and explaining time which indicates that problems that
were previously intractable for exact computation are now
inexpensive.

TABLE V: Game cheating detection performance comparison
among different methods.

Algorithm AUC ACC Time_tra Time_inf Time_exp
Portrait View

RF 0.9764 0.9516 31s 0.2408s 0.0591s
XGBoost 0.9876 0.9724 9m38s 0.0004s 0.1745s
LightGBM 0.9859 0.9659 53m10s 1.0286s 0.0226s
CatBoost 0.9834 0.9674 23m21s 0.1652s 0.0034s

Behavior View
CNN 0.9667 0.9561 1h32m40s 1m20s 23s
LSTM 0.9389 0.9376 4h10m56s 2m42s 33s
BLSTM 0.9506 0.9418 7h30m27s 3m24s 1m5s
ABLSTM 0.9661 0.9507 8h11m52s 4m24s 1m54s

Transformer 0.9836 0.9694 10h53m17s 6m9s 2m35s
Image View

AlexNet 0.5259 0.6727 1h36m53s 3m27s 15s
VGG 0.5030 0.7605 55m43s 1m33s 2m39s

GoogleNet 0.9644 0.9147 1h12m17s 5m10s 1m2s
ResNet 0.9351 0.8940 42m25s 1m26s 3m6s

DenseNet 0.9268 0.9065 1h25m40s 10m19s 5m54s
Graph View

Trade_GCN 0.9832 0.9795 2h50m3s 48s 2m53s
Team_GCN 0.9759 0.9715 2h44m22s 53s 3m12s
Chat_GCN 0.9742 0.9584 2h58m39s 49s 2m44s
Friend_GCN 0.9808 0.9713 2h48m11s 48s 3m37s
Trade_GAT 0.9669 0.9537 6h3m36s 45s 3m37s
Team_GAT 0.9576 0.9516 6h57m47s 42s 4m2s
Chat_GAT 0.9581 0.9495 6h5m47s 46s 3m47s
Friend_GAT 0.9598 0.9525 5h59m6s 46s 3m55s

C. Portrait Explanations

Individual portrait explanations. The cheating player in
Figure 6a has a large computer physical memory size, and
it is very likely that the cheating studio is opening a good
deal of accounts in batches. At the same time, his average
percentage of storyline watching is very small since cheating
players are not as interested in the storyline as normal players.
They are more concerned about how to profit from the game at
a low cost that leads to his small proportion average daily PVP
duration in the past month. The most obvious evidence for
the normal player in Figure 6b is that he has more chats. His
average number of chats on the team, the number of emojis
used, and that of comments on the world channel within two
weeks are higher.

Local portrait explanations. Four clusters are found for
game cheating detection in Figure 7a. For the players in

(a) Cheating with individual portrait explanation

(b) Normal with individual portrait explanation
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Fig. 6: Individual explanations with SHapley Additive exPla-
nation (SHAP) [21] values which indicate the attribution of
portraits and behaviors. Colors in plots are smoothed as the
larger the SHAP value, the redder the color, and the smaller
the SHAP value, the bluer the color.

the cheating cluster 1, their average percentage of storyline
watching are all 0. For those in normal cluster 2, they use
more silver in the game. In another cheating cluster 3, the
players have larger computer physical memory size, and the
average percentage of storyline watching is relatively low. At
last, players in normal cluster 4 conduct more chats.

Global portrait explanations. As demonstrated in Figure
8a,8b, the cheaters’ computer physical memory and display
memory are generally large, and are basically high-end equip-
ment of cheating studios. Normal players are more inclined to
watch the game storyline, and spend more time pinching their
faces. The cheating players rarely chat, while normal players not
only speak in the team, but also make comments on the world
channel, and send some emojis. The cheaters regularly create
teams and take part in more side missions. Since cheating
players do not have strong operability like normal players,
the percentage of mission failures and abandoned missions
is relatively high. Normal players prefer to involve in PVP
gameplay such as SJTX. They are also more active in guild
activities. For players with large guild funds, the normal
possibility is relatively large, but there are also guild groups
with concentrated cheating players. Equipment upgrading is
one of the core gameplay of the game. Although the proportion
of cheaters participating in this type of gameplay is relatively
large, normal players improve their equipment even faster.

D. Behavior Explanations

Individual behavior explanations. The cheating player in
the red block in Figure 6c continuously accepted the task,
completed or abandoned the task, and gained money through
the game task. In the dark red part at the end of the behavior
sequence, this player began to frequently transfer money to
other accounts. The normal player in the blue block in Figure
6d participated in some guild activities, and made comments
on many channels. But there is a dark red part in the middle
that he left the guild, but later he joined a new guild soon.



cheating cluster 1

normal cluster 2

cheating cluster 3

normal cluster 4

(a) Game cheating detection with local portrait explanation

cheating cluster 1

normal cluster 2

normal cluster 3

(b) Game cheating detection with local behavior explanation

Fig. 7: Supervised clustering with individual explanations identifies among 2,000 individuals distinct subgroups of players that
share similar reasons for specific roles. Each prediction was explained using individual explanations, and then clustered using
hierarchical agglomerative clustering (imagine a dendrogram above the plot joining the individuals). Red feature attributions
push the score higher, while blue feature attributions push the score lower (as in Figure 6 but rotated 90’).
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Fig. 8: Global explanations of XGBoost models and Transformer models on game cheating detection. Every individual is run
through the model and a dot is created for each feature attribution value, so one player gets one dot on each feature’s line.
Dot’s are colored by the feature’s value for that player and pile up vertically to show density.

Local behavior explanations. The results in Figure 7b
indicate that there are 3 clusters in game cheating detection.
The cheating cluster 1 has been punished for PRC cheating,
accelerator cheating and GM setting. The normal cluster 2
is charactered by having recharged to buy VIP and fashion
clothes, etc. The players in normal cluster 3 participate in PVP
gameplay such as BDGSJ, etc.

Global behavior explanations. As illustrated in Figure 8c
and Figure 8d, only normal players will normally trigger
anti-addiction system reminder, and are willing to talk to
other players during the game. The cheaters have had PRC
cheating punishment, accelerator cheating punishment and GM
setting punishment. They constantly receive quests to improve
experience, and consume physical energy more and faster. The
cheating players continue to profit from the game while normal
players will spend a moderate amount of money in the game.
Generally, only normal players will recharge to buy VIP and
buy fashion clothes in the game. Normal players will pay
attention to their ranking in the game and take part in some
gameplays like BDGSJ. As cheating players use special game
bots, there will be some bugs related to scene loading or skill
releasing interval, which will be recorded in the game logs
too.

E. Image Explanations

Figure 9a shows the important pixels of the model to
determine the player cheating. The player uses the perspective

plugin-in to mark the position of the opponent with a red frame,
and at the same time, the player’s ID and the remaining health
are marked above the frame. For game cheating detection, we
cluster important pixels in the individual explanations, and we
observe several typical clusters in Figure 9b. Firstly, the plug-in
interface appears in the upper left corner. Secondly, the plug-in
interface appears in the lower right corner. Thirdly, it exists
a large number of red or green frames indicating the position
of the opponent just above the middle of the plug-in interface.
We aggregate the locations of important pixels. On the whole,
the game content display panel and mini-map above the game
interface have no plug-in elements, and neither do the game
operation panel and chat window below the interface.

(a) Individual image explanations

Cluster 1

Mini-map

Cluster 3

Cluster 2

Display panel

Chat window Operation panel

(a) Cluster 1

(c) Cluster 3

(b) Cluster 2

(b) Local image explanations

Fig. 9: Image explanations for cheating detection.

F. Graph Explanations
From the filtered subgraph of Figure 10a, we can observe a

typical real money trading [8]. The node 14 is a gold banker



who gathers virtual goods from gold farmers and sell them
to gold buyers. The nodes 3,6,11,16 are gold buyers who
purchase virtual money with real money from the gold banker.
The node 4 is a gold farmer who works full time playing
games by using automated programs or by hiring low-cost
laborers. As can be seen from Figure 10b and Figure 10c,
cheating players are always in the same friend or team circle.
Figure 10d demonstrates that the node 3 is a gold buyer. He
constantly consults gold bankers (nodes 4,10,33) for real money
trading. We cluster the filtered subgraphs in Figure 10, and it is
noticeable that there are different structure types under the same
relationship. These different types of structural information can
be used as a rule to directly search for cheating players.

(a) Game cheating detection with individual transaction explanation

(b) Game cheating detection with individual friendship explanation

(c) Game cheating detection with individual teaming explanation

(d) Game cheating detection with individual chatting explanation

Fig. 10: (a)-(b) Individual explanations in graph view.

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3 (d) Cluster 4

Fig. 11: (a)-(e) Local explanation in transaction view.

V. APPLICATIONS

A. Evidence and Reason Generation

To validate that the explanations are the most natural and
intuitive, we run user studies of game operators and game
designers. Participants are not selected for artificial intelligence
expertise. Evaluation criteria for explanations consists of
truth, usefulness, relevance, coherence with prior belief and
generalization. Figure 12a presents the feedback of the user
studies for evidence and reason generation. We received about
87.46% of positive feedback from the game operator teams
and the image explainer reached a maximum of 96.4%.
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Fig. 12: (a) User studies for evidence and reason generation.
(b) Model debugging with the image explainer.

B. Model Debugging and Compression

The game cheating detection model recognizes normal
pictures as cheating pictures in Figure 12b. We analyze the
explanations of the image explainer and find that the red
crosshairs of the players are similar to the plug-in elements,
which led us to mistakenly identify normal players as cheating
players. By introducing more similar negative samples in the
training set, we quickly improve the accuracy of the model
and reduce the error blocking of the online model.

Figure 13 demonstrates the prediction comparison using
the same classifier for input with top-k features selected
by different explainers. As can be seen in Figure 13a, the
predictions with portrait features selected by portrait explainers
are better than those selected from random samples, among
which XGBoost based explanation results showed the most
outstanding performance. We also find that for game cheating
detection, we only need 80 features to achieve near-optimal
performance. Figure 13b illustrate the similar conclusion for
the behavior view, among which Transformer based explanation
results show the most prominent performance. We also find
that we only need 800 behaviors to achieve nearly optimal
performance for game cheating detection. We observe in Figure
6 that the behaviors at different positions are of different
importance. For game cheating detection, we merely need
to retain the behavior sequences with a length of about
500. Through the above feature selection based on model
explanations, we have greatly compress our model and improve
the efficiency of model training and online inference.
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Fig. 13: (a)-(b)Detection for input with top-k features.

VI. CONCLUSION AND FUTURE WORK

In this paper, we first introduced the explainable multi-view
cheating detection in online games and proposed an EMGCD
framework which was evaluated with real-world datasets from
NetEase Games. Extensive experiments show the accuracy
of classification and the rationality of explanation. We have
also discovered and presented quite a lot of interesting and
valuable findings from the model explanations. What’s more, we
implemented and deployed the framework in NetEase Games
and received very positive reviews from the game operator
teams. We are working for the explainers of the multi-view data
fusion based black-box models and expanding our work to more
applications in online games like explainable recommender
system, explainable churn prediction, etc. We are also focusing
on developing an XAI platform for explanations across AI
lifecycle with pre & post deployment for AI models. Demos
will come soon for the following demo tracks.
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