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Abstract—Access to a fast and easily copied forward model
of a game is essential for model-based reinforcement learning
and for algorithms such as Monte Carlo tree search, and is
also beneficial as a source of unlimited experience data for
model-free algorithms. Learning forward models is an interesting
and important challenge in order to address problems where
a model is not available. Building upon previous work on the
Neural GPU, this paper introduces the Neural Game Engine,
as a way to learn models directly from pixels. The learned
models are able to generalize to different size game levels to
the ones they were trained on without loss of accuracy. Results
on 10 deterministic General Video Game AI games demonstrate
competitive performance, with many of the games’ models being
learned perfectly both in terms of pixel predictions and reward
predictions. The pre-trained models are available through the
OpenAI Gym interface and are available publicly for future
research here: https://github.com/Bam4d/Neural-Game-Engine

I. INTRODUCTION

Recent research has focused on forward models of games
that can be learned either through heuristic methods or using
deep neural network architectures. These learned models can
then be used by traditional planning algorithms, or as part of
the architecture in reinforcement learning. Using neural net-
works in planning algorithms can be difficult, as the accuracy
of state observations tends to decrease with the number of
steps that are simulated. This results in diminishing efficacy
of planning algorithms when larger rollout lengths are used.
Recent neural network models also tend to rely on a fixed
dimensional observational input to predict the rewards and
subsequent states and therefore struggle to generalize to games
that may have different sized observational spaces.

Heuristic rule-based algorithms for learning forward models
[1] [2] offer high performance when they work, but require
human input regarding the form the rules will take.

Recent work on a local approach to learning forward models
[3] shares some similarities with the Neural Game Engine, in
that both methods are able to generalize to levels of a different
size than those seen during training. Compared to [3], the
Neural Game Engine works directly with pixels rather than
tiles, and for many games also does accurate reward prediction.

Grid-based arcade style games, although simple to under-
stand for humans, still present highly challenging environ-

ments for artificial intelligence. In this paper a grid-based game
refers to a game that is based on a grid of discrete tiles such
as walls, floors, boxes and other game-specific items. A single
agent has a set of actions it can perform at each time step,
such as movement or interaction with other tiles in the grid.
The agent is restricted to perform a single action at each time
step. Additionally, each environment may have a different grid
dimensions, leading to variable observation space sizes. These
game environments can be represented by a fully observable
markov decision process with states s as the pixels of the
environment, actions a of the agent and the rewards r given
by the game score.

This paper proposes a novel architecture, the Neural Game
Engine, based on a modified Neural GPU[4] [5].

The Neural Game Engine (NGE) can learn grid-based
arcade style games of any dimensions with high accuracy from
a limited number of game ticks (state transitions). Additionally
the architecture can scale to grid games of any number of tiles
without loss of accuracy. The NGE engine is trained on several
deterministic games 1 from the GVGAI environment [6], an
updated version of pyVGDL [7] which provides many grid-
based games under the openAI gym wrapper [8].

The paper is structured as follows: Firstly, section II covers
recent similar research that covers the generation of forward
models and how they have been used in various research such
as statistical forward planning algorithms or reinforcement
learning.

Section II-C describes the Neural GPU in detail and the
modifications it requires to learn high accuracy game models.
Evaluation methodology and training details are given in
sections IV-C and IV-D. Finally, results of various architecture
and training experiments are given in section V

II. BACKGROUND

A. Learning Forward Models

Humans have the ability to model the outcome of their
actions. This is achieved through having an internal model of
the environment in which different actions can be tested out

1Pre-trained models are available through the OpenAI Gym interface and
are available publicly for future research here: https://github.com/Bam4d/
Neural-Game-Engine
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and appropriately chosen. This inherent ability allows humans
to perform tasks such as planning or seeking intrinsic rewards
[9]. For artificially intelligent agents, having access to, or
learning the model of its environment through experience is
arguably an unavoidable step towards being able to achieve
artificial general intelligence.

Deep neural networks have been used successfully to es-
timate forward models for various use cases. For example
curiosity driven exploration [10] make use of having forward
model that can be used to measure uncertainly about partic-
ular states. This measure of uncertainly is used as intrinsic
motivation to drive the agent to explore actions that take the
agent to states that have not been seen before.

Similarly predictions about how much information the agent
has access to in certain states have been used to try and
maximize the Empowerment of the agent. If an agent is more
empowered, it typically has greater access to states that will
end in high rewards [11].

In many cases, it is difficult to learn a model of the environ-
ment which can perfectly reproduce the environment dynamics
and observation frames over many time steps, especially if the
model has stochastic elements such as enemies that move in
unpredictable ways.

In [12], a combination of auto-encoders and recurrent neural
networks are used to predict the next frames of several OpenAI
gym games. Auto-encoders were used to encode the data of a
single frame into a latent state zt, this latent state is then used
in combination with an LSTM (Long Short-Term Memory),
which stores information about previous states, to output a
probability density function P (zt+1|at, zt, ht) where at is the
action applied at time t and ht is the hidden state produced
by the previous LSTM cell. This distribution can then be used
to produce the next frame.

More recently generative models have been used to pre-
dict frames of environments by sampling from a distribution
p(s′|s, a) where s′ is the state being predicted. Generative
models allow the capture of stochastic and deterministic dy-
namics of game states, and can even predict the actions of
non-player characters (NPCs).

Generative state space models [13] [14] [15] [16] encode
state information into a typically 3-dimensional tensor instead
of a latent vector allowing a richer representation of the
underlying environment states, these models are commonly
combined with recurrent neural network techniques such as
LSTMs and GRUs (Gated Recurrent Units) and are generally
more accurate than latent vector encoding of states. State space
representations are also used in [17] in order to predict future
states without performing step-by step rollouts.

B. Local Forward Modelling

A recent successful method of learning forward models of
grid-based games is to use Local Modelling. Local modelling
takes advantage of the fact that in many games, the mechanics
can be applied to small areas of the game environment
independently of others. The most simplistic example of a
local model is that of a 2D cellular automata. It has been

shown that using local modelling, forward models of basic
cellular automata based games can be learned by focussing
on the rules which modify the state of single tiles based on
the surrounding tiles [18] [3]. In [19] the model used for
learning the forward model of the imagined Sokoban game
is the equivalent of a local feed-forward cellular automata
model. This technique is also used in [13] [16] for state-space
transitions and during encoding and decoding of pixels to the
latent state-space.

Local modelling is also used in [20] as part of a model-
free RL agent. Because this architecture works well with tasks
that usually require agents to plan, it is argued that although
this architecture is not explicitly trained to reproduce the
underlying environment model, it is learning to plan implicitly.

C. Neural GPU

The Neural GPU (NGPU) architecture introduced in [4]
and improved upon in [5] can learn several unbounded binary
operations. For example, multiplication, addition, reversal and
duplication. This is achieved by effectively learning 1D cel-
lular automata rules which are then applied over a number
of steps until the result is achieved. The number of steps I
is typically proportional to the size of the binary digits being
processed. The Neural GPU applies the cellular automata rules
to an embedded representation of the binary digits using a
convolutional gated recurrent unit (CGRU) with hard non-
linearities. The CGRU itself is described by the following set
of update rules:

ui = σ̂(U ′ ∗ si−1 +B′)

ri = σ̂(U ′′ ∗ si−1 +B′′)

ci = ˆtanh(U ∗ ri � si−1 +B)

si = ui � si−1 + (1− ui)� ci

(1)

In the above equations U , U ′′, U ′′′ are convolutional kernel
banks and B, B′, B′′ are learnable biases. The ∗ operator is
used to describe a convolution operation of the left parameter
over the right. For example U ′ ∗ s denotes the kernels in U ′

convolved over the values in s. ˆtanh and σ̂ represent the
hard non-linearity versions of the tanh and sigmoid functions
respectively and � represents the Hadamard (or element-
wise) product between two tensors. Details of the hard non-
linearities are given in the original paper [5]. When dealing
with binary operations, the Neural GPU takes an input of
arbitrary length, containing the binary encoded digits and the
operation to perform. The binary digits and operation symbol
are embedded into the initial state s0 this state is then iterated
through the CGRU for n steps and final state sn is read out
using a softmax layer which predicts the binary result.

As the Neural GPU can be seen as a recurrent application
of learnable cellular automata rules, this leaves it well suited
to being able to learn the local rules of grid-world based
games. This architecture is comparable to other state-space
architectures that use size-preserving layers [19], [13] [20],
with the exception that parameters are shared between layers,



no latent state information is shared between frames and
different gating mechanisms are explored.

III. NEURAL GAME ENGINE

The Neural Game Engine is a neural network architecture
with a modified Neural GPU at its core. The main modifi-
cations to the Neural GPU are outlined in this section. In
the Neural Game Engine the state s takes a two dimensional
shape (Ws, Hs, Cs) where the width Ws and height Hs reflect
the width and height in tiles of the game being trained
and Cs is the number of channels. Each vector stored at
(ws, hs) represents a single tile in the grid environment. The
convolutional kernel banks U , U ′ and U ′′ are also modified
to be two dimensional with a shape of (3, 3). The stride and
zero-padding are kept the same as the original paper at 1.
As there are no diagonal movements allowed in any GVGAI
environment, the kernels are also masked to ignore the non-
adjacent cells. Similarly to the NGPU, an iteration of the
CGRU unit with input si produces a new state si+1. The
number of iterations of CGRU cell per frame of the game
state is tuned as a hyperparameter n.

The width and height of the games in the GVGAI envi-
ronment can be any positive integer value. Due to the fact
that changing the values of Ws and Hs does not result in any
change of the number of parameters in the underlying Neural
GPU, this means that the Neural Game Engine can generalize
to any Ws and Hs. This unbounded computation of game state
is discussed further in section V-D.

In many reinforcement learning techniques, the rewards that
the game provides to the player are augmented in order to
aid exploration, modify the agent’s goals, or provide auxillary
losses to reduce training time [21], [22]. In some cases the
original rewards supplied by the environments are modified
from their original values with a technique known as reward
shaping [23].

Reward prediction in the Neural Game Engine aims to
reproduce the original game rewards as accurately as possible,
but decouples reward prediction learning from learning the
game mechanics.

At every time step the Neural GPU is applied to an encoded
observation image Ot, iterated n times and then decoded
to give the next observation state Ot+1 and reward rt. The
architecture for a single time-step calculation is shown in
figure 1.

A. Observation Encoder - fo(Ot)

In the GVGAI environment, tiles in the trained games are
set to have the same width and height dimensions D. This
consistency allows the tiles to be embedded into a tensor Oe

t

with the same dimensions of the NGPU initial state s0. This
tile embedding is achieved by using a convolutional neural
network with kernel width, kernel height and stride set to D,
input channels set to 3 to reflect the RGB components of the
image and finally output channels set to Cs, the number of
channels in the NGPU state.

B. Observation Decoder - fd(sn)

To render the game pixels, a mapping from the underlying
embedded tile representations to the pixel representations
of the tile is learned. This mapping takes the form of a
convolutional transpose with kernel size D and stride D.
The number of input channels is set to 3 to reproduce the
RGB components. This mapping recovers a tensor of shape
(D.Ws, D.Hs, 3) which can be rendered.

C. Action Conditioning - fa(O
e
t , at)

As the action needs to be considered as part of the local
rule calculations in the NGPU, information about the actions
must be available in the s0 state, along with the observations.
To achieve this, the action at is one-hot encoded and then
embedded with a linear layer of output size Cs. This is then
added to each cell of the initial state s0. In practice this can
be achieved by tiling the one-hot representation of the action
into a tensor of size (Ws, Hs, As), where Ws and Hs are the
width and height of the NGPU state, and As is the cardinality
of the set of actions for the game. This state can then by
passed to a 1x1 convolutional neural network with Cs output
channels. The resulting tensor can then be added to the Oe

t ,
which results in the initial s0 state of the Neural GPU.

D. Reward Observation Encoder - fr
o (Ot)

The reward observation encoder consists of a tile embedding
layer similar to the observation encoder encoding each tile into
a vector with Cr channels, giving an embedded observation
state Or

t of size (Ws, Hs, Cr).

E. Reward Action Conditioning - fr
a(O

r
t , at)

A separate action conditioning network encodes the action
at each step at to a one hot vector which is then embedded
into a linear layer of size Cr and finally added to each of
the embedded tile vectors giving the reward state srt . This
process is identical to the NGPU action conditioning, the
only difference is the number of channels may be different
depending on hyperparameter choices.

F. Reward Decoder - fr
d(s

r
t )

In order to decode the rewards from the reward state srt ,
a convolutional network network with kernel size of 3 and
padding 1 is used followed by two convolutional layers with
kernel size of 1, 0 padding and number of channels decreasing
in each layer. A final convolutional layer with kernel size
3 is used to decrease the number of channels to 16 and an
arbitrary height and width. Global max pooling is applied
across the remaining arbitrary height and width dimensions
leaving 16 outputs. These 16 outputs are then trained with
categorical cross entropy loss to predict an 8 bit binary number
corresponding to the reward. Predicting binary rewards in this
way instead of predicting linear values means that reward
prediction is reduced to a classification problem, which yields
more accurate reward predictions. Negative reward values
given in the original environment are currently ignored as
the predicted binary number is unsigned. To support negative
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Fig. 1: Architecture of the Neural Game Engine

rewards, a sign bit or two’s complement encoding could be
used. To predict fractional rewards, float or double encoding
could be used.

IV. NEURAL GPU ENHANCEMENTS

A. 2D Diagonal Gating

Diagonal gating, introduced in [5] is a technique used in
the NGPU architecture to allow state cell values to be passed
directly to neighbouring states cells. In the context of a grid-
world game, it follows that information such as tile type,
could be transferred in this manner. The state of the original
NGPU is a one-dimensional vector and thus its diagonal gating
mechanism allows it to copy state information from the left
and right cells. The state of the underlying NGPU in the
Neural Game Engine is two dimensional, which means that the
diagonal gating mechanism can copy from above and below,
as well as left and right. To achieve this, the state is now
split into 5 parts si = (s1i , s

2
i , s

3
i , s

4
i , s

5
i ) and a 2D convolution

operator with fixed kernels as shown in equation 2 is used.

si = ui � s̃i + (1− ui)� ct
s̃i = (s̃1i , s̃

2
i , s̃

3
i , s̃

4
i , s̃

5
i )

s̃1i = s1i−1 ∗ [[0, 1, 0], [0, 0, 0], [0, 0, 0]]
s̃2i = s2i−1 ∗ [[0, 0, 0], [0, 0, 1], [0, 0, 0]]
s̃3i = s3i−1 ∗ [[0, 0, 0], [0, 0, 0], [0, 1, 0]]
s̃4i = s4i−1 ∗ [[0, 0, 0], [1, 0, 0], [0, 0, 0]]
s̃5i = s5i−1 ∗ [[0, 0, 0], [0, 1, 0], [0, 0, 0]]

(2)

B. Selective Gating

One of the issues with diagonal gating is that the copying
of the state information is uni-directional for the state values
in each cell (ws, hs, cs). To illustrate this issue consider the
values in any sub-state sxi . The values in each sub-state are
only shifted in a single direction. This means that sub-states
that are shifted in one direction are not the same states that
can be shifted in the other directions. This uni-directional
flow does not allow consistent copying of state information
across all directions. Intuitively this means that if a tile moves
upwards, the state information it can bring to the cell above

cannot be moved to the left, right or even back to the cell that
it started in.

To alleviate this issue, a selective gating mechanism is
proposed which allows the gating mechanism to copy values
in any direction for any value in any cell (ws, hs, cs).

The selection mechanism works by learning a classifier
that, given the state tensor si outputs a selection tensor Ŝ of
dimensions (Ws, Hs, Cs, 5) where the selection of the gating
directions (up, down, left, right, center) are one-hot encoded
into the last dimension. The selection tensor is created by
applying a convolution operation to the state si with kernel size
of 3x3, stride of 1, padding of 1 and 5Cs output channels. The
5Cs channels are then reshaped into a tensor of size (5, Cs)
and a softmax applied across the first dimension to give a
selection for each of the Cs values. The selection tensor Ŝ
is then multiplied by a tensor K̂ of shape (5, Cs, 1,Ws, Hs)
containing 5 directionally shifted versions of the original state.
This gives the new state s̃i.

si = ui � s̃i + (1− ui)� ct
s̃i = ŜK̂

K̂ = [Mu(si),Md(si),Ml(si),Mr(si), si]

(3)

The shifting operation can be achieved by the convolution
of a fixed kernel that copies states from adjacent cells. Zero
padding of 1 is applied so the state retains its original shape.
For example:

Mu(si) = si � [[0, 1, 0], [0, 0, 0], [0, 0, 0]]

Md(si) = si � [[0, 0, 0], [0, 0, 0], [0, 1, 0]]

Ml(si) = si � [[0, 0, 0], [1, 0, 0], [0, 0, 0]]

Mr(si) = si � [[0, 0, 0], [0, 0, 1], [0, 0, 0]]

(4)

C. Evaluation Methodology
The aim of the experiments is to try reach pixel-perfect

reproduction of original GVGAI environment games over
abitrarily long time frames for levels with any dimensions.
In order to achieve this, the network must learn the game
mechanics on a symbolic level and then be able to apply these
to larger game states.

The results presented in this paper are performed on the
game Sokoban as it is a good example of a GVGAI game
with local rules.



In order to measure the accuracy of the reproduction of the
game, two related measures are used. Firstly the mean-squared
error Emse of the raw pixel outputs at each step and secondly,
a closest tile f1 Ft measure. The closest tile measure is created
by firstly taking a tile map of the original observation Tm
which has dimensions (Ws, Hs) where each element in the
map corresponds to an index of the set of possible tiles T .
A second tile map T̂m is then created by finding the closest
matching tile in the set of tiles T for each DxD tile in the
predicted observation. The closest tile f1 measure is calculated
from the mean of the f1 scores for each of the tiles in Tm and
T̂m. The f1 scores are generated by measuring the precision
and recall of the tile predictions.

Both measures reflect each other, a lower Ft would corre-
spond to a high Emse. However, Ft is calculated as closest
tile to a pre-generated set of tiles T which does not measure
how close the tile predictions are to the original pixels. The
measurement of Emse achieves this more direct comparison.

Alongside learning the pixel-accuracy, the rewards given by
the environment are learned. Reward error is measured by
converting the real reward values to a binary representation
and then calculating the cross entropy loss. Reward accuracy
is measured using precision, recall and f1 Fr score of the
binary classifications.

D. Training

In order to obtain accurate rollouts over long time periods,
for any size network, the training data is generated in a way
that does not bias towards game sizes, numbers of tiles (such
as walls, boxes and holes in sokoban), or particular RL or
planning policies.

Level generation for GVGAI games has been explored in
[24], [25] and [26]. However these generators are aimed at
either producing levels that help RL agents to learn or are
pleasing to human players.

To generate levels for learning the environment dynamics,
the probability for an agent to interact with different types
of tiles must be evenly distributed. To achieve this, levels are
randomly generated with height H and width W between cer-
tain values Hmin, Hmax, Wmin, Wmax. GVGAI environments
typically contain 5 pre-built levels. These pre-built levels are
used to generate the probabilities of each tile being placed
in the environment. Tiles are positioned with these calculated
probabilities with the caveat that wall tiles are always placed
on the edges of the game state if this is consistent with the
5 pre-built levels. Additionally, tiles that only appear once in
each level are placed only once in generated levels.

A random agent is used to generate experience data in
the environment. To improve the distribution of training data,
each step is augmented by creating 8-way tile-symmetrical
observation and actions. Each step of learning uses mini-batch
gradient descent, where the batch contained the symmetrical
experiences. Batch sizes are fixed at 32 state transitions, giving
a total of 256 frame transitions per batch.

As the observation predictions at each time step become
the inputs for the next prediction, errors can build up over
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Fig. 2: F1 score (Ft) and mean squared error (Emse) when
training the three gating mechanisms over 1.28M frames.
Selective gating trains fastest and is the most accurate.

time and cause the rollout accuracy to decrease rapidly.
During experiments, the same Prediction Dependent Training
(PDT) technique introduced in [27] coupled with a curriculum
schedule was employed which increased accuracy and training
stability. Observation noise is also added to training data, this
was integral to achieving high accuracy.

In order to evaluate the training progress of the environment,
rollouts are performed every 200 epochs using real game levels
from the GVGAI environment. 3 repeats of rollouts of length
100 are performed, and Ft and Emse are calculated. 2

V. EXPERIMENTS AND RESULTS

A. Comparison of gating mechanisms

In figure 2, the NGE architecture using the different NGPU
gating mechanisms described in section III is shown. Even
with no diagonal or selective gating, the NGE can learn
accurate models of game environments. In the experiments,
Selective gating had a small advantage in stability over long
time horizons, this is also reflected in table I.

B. Comparison with other methods

The best performing Neural Game Engine (NGE) model
from section V is compared against several common networks
from recent literature with the game Sokoban. Rewards pre-
diction is not analysed as it is a separate network. The network
architectures that are compared are the following:

a) FeedForward (FF): This model replaces the NGPU
module with two feed-forward convolutional layers with kernel
size of 3, stride 1 and padding 1. This is the equivalent of the
basic block used in [19] when training Sokoban. The model
compared does not use pool-and-inject layers as Sokoban
has no long-distance dependencies that require global state
changes. This model is commonly used as the deterministic

2All training and testing is performed on a single Ubuntu 18.04 machine
with an NVIDIA 2080ti GPU, Intel Core i7-6800K CPU and openBLAS
(0.2.20) libraries installed.



0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e 
Ti

le
 F

-S
co

re
 (F

t)
NGPU (selective) RES FF sSS

0 0.5 1 1.5
10 6

10 5

10 4

10 3

10 2

10 1

Er
ro

r (
E m

se
)

0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5
Millions of frames

Fig. 3: F1 score (F1t) and mean squared error (Emse) when
each forward model method is trained over 1.28M frames.
NGPU achieves the lowest Emse and highest average Ft score.

component of generative state-space architectures and is well
suited to deterministic grid environments.

b) Recurrent Environment Simulators (RES): The state
of the game is encoded into a latent state using an auto-
encoder. This latent state then forms the input to an LSTM unit
which can store past state information in its hidden state. This
model is equivalent to the Recurrent Environment Simulator
(RES) [27] and models that use an auto-encoder to create a
latent state.

c) Stochastic State Space (sSS): The most complex
model which, like NGE heavily uses cellular automata-like
layers which encode pixel information into a compressed grid.
The model differs from NGE in that it works with continuous
and stochastic environments, and therefore uses sampling in
order to produce the output observations.

Figure 3 shows the comparison of these 4 methods with the
same input data and number of epochs. The training in this
experiment is limited to random grids of fixed size (10x10).
This is due to the fact that RES and sSS models contain
architectural components that cannot generalize to different
size grids. Each method trains to high accuracy quickly, fol-
lowed by a plateau in decreasing error, leading to a maximum
accuracy. In the case of Sokoban, FF, sSS and NGPU methods
have a slight advantage as Sokoban is naturally suited to local
modelling. However the sSS model is disadvantaged by the
fact that it contains stochastic components that are trying to
model completely deterministic state transitions.

C. Ablation Testing

An important feature of many games is that many inter-
actions between adjacent cells can be dependent on other
surrounding cells. For example in Sokoban, when pushing a
movable block against a wall, a 3x3 grid around the location of
the agent will not take into account the wall when calculating
the next state of the cell currently occupied by the agent.
However, the NGPU accounts for non-local interactions when
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Fig. 4: Learning an accurate model of the Sokoban environ-
ment is dependent on having multiple iterations of the NGPU
units and also training over multiple states. When the network
is restricted to a single iteration n = 1 or is trained without
PDT, the accuracy suffers. The results shown here are the
rollout accuracy measurements against the 5 original hand-
built GVGAI environments, taken every 200 epochs during
training.

it iterates during a single time step. This effectively lets cells
share information during the processing of a single state. With
n = 2, the NGPU can share information from more adjacent
cells, encompassing the wall that the block cannot be moved
past. Other models such as those used in [13] [19] use similar
techniques, but use fixed networks with different convolutional
network sizes and apply residual layers. Using a NGPU with
multiple iterations removes the requirement for multiple layers
of convolutions and residual connections, making the network
much simpler and smaller.

In [5], diagonal gating is used to share state information
between adjacent cells. As described in section 3 this only
allows single-direction information flow, which reflects in the
higher error rate of NGE models using diagonal gating.

To test that the iteration of NGPU is vital for information
flow in local interactions, two experiments are performed
under all the same conditions of the high performing models.
One with the modification that only a single NGPU step and
no PDT is configured during training. The other with a single
NGPU step, but using PDT described in section IV-D. The
second experiment aimed to rule out that local information
could be transported through pixels. The results of this are
shown in figure 4.

In both the 2-step and 2-step+PDT experiments, the accu-
racy achieved is high, but with the single step options, the
accuracy achieved plateaus at a much lower value and the
prediction error remains high. This result shows that multiple
steps of the NGPU are vital to achieving high accuracy. It’s
also important to note that the 2-layer FF model in figure 3
also could not achieve this high accuracy.



Grid Size max(Emse) F1

30x30 7.5e-6 1.0
50x50 8.3e-6 1.0
70x70 7.9e-6 1.0

100x100 7.9e-6 1.0

TABLE I: The maximum mean squared error and closest
tile error for 500 steps averaged over 10 repeats. NGPU
with Selective gating obtains high tile accuracy in all of the
generalization tests.

Game max(Emse) min(Ft) min(Fr)

sokoban 7.5e-6 1.0 1.0
cookmepasta 9e-4 0.98 0.83

bait 5.2e-4 0.97 0.99
brainman 3.6e-4 0.97 1.0
labyrinth 1.6e-5 0.97 1.0

realsokoban 1.8e-3 0.86 1.0
painter 4.6e-6 1.0 1.0
clusters 1.3e-5 1.0 0.0

zenpuzzle 8.2e-6 1.0 1.0
aliens 5.1e-3 0.73 0.85

TABLE II: The maximum mean squared error max(Emse),
minimum closest tile f1 min(F1) and minimum reward f1
min(Fr) for 100 steps over 3 repeats.

D. Generalising to different size grids

To test the generalization ability of the trained NGE, the
models trained in section IV-D are used to play several levels
with much larger dimensions than those during training. These
larger models are then compared against the original GVGAI
environment with an identical starting state and action list.
The two methods (Emse and Et) of measuring the accuracy
of these models are used as described in section IV-D. For each
model, the two measure are calculated for each step up to 500
and an average of the measures are taken over 10 repeats.
These results are shown in table I

E. Results on GVGAI games

The results of training Neural Game Engine on several
GVGAI games is shown in table II. The rollouts follow the
same setup described in section IV-C Games that result in Ft

scores of 1.0 show that the underlying game rules are learned
accurately and the NGE does not make any mistakes when
tested. Reward F1 scores Fr can be interpreted in the same
way. Most of the tested games achieve high accuracy, however
there are some game mechanics that cannot be supported
by the NGE without modifications. As an example, clusters
completely fails to learn the reward function. Rewards are
fairly common in the game and the forward model itself learns
accurately, so the reason for this is unclear. The game aliens
is included as an example stochastic and partially observable
game (the enemies randomly shoot at the player and the
enemies spawn from a location that has no visible markers).
The reward function min(Fr) of aliens is partially learned by
NGE, however the min(Ft) score is 0.73 meaning that just
over a quarter of the tiles are predicted incorrectly.

VI. DISCUSSION

There are several interesting applications for games trained
with the NGE architecture, for example the fact that games can
be learned with high accuracy over long time horizons, these
can be used in planning algorithms. Additionally, because
these games also run entirely on the GPU, the sample rate and
parallelization ability mean that they can be used as efficient
environments for reinforcement learning experimentation.

There are two main limitations that the NGE architecture
suffers from: its lack of ability to model stochastic game
elements, and global state-changes. Further experimentation
and research is required to achieve these goals. One approach
could be to use NGPU modules in place of the deterministic
size preserving layers in sSS models.

One large area for improvement for the Neural Game Engine
is that the statistical method of level generation and random
agent movement does not produce enough examples for some
local patterns and can produce unsolvable or unplayable
levels. In many cases, tweaking the random level generation
parameters is enough to give the NGPU a distribution which
greatly improves the accuracy of training. Improving the data
distribution of local states to train the NGPU is an area which
could greatly be improved. Using curiosity driven agents, or
planning agents may provide much better data distributions
for learning rewards, but may avoid areas of low rewards and
therefore not learn the full game dynamics.

Another area of improvement would be that the Neural
Game Engine only predicts a single time step in the future,
therefore events that do not specifically change the observa-
tional state are completely lost. For example, in some games
the agent picks up a key and then the agent tile changes to
show the agent holding a key. Once the agent has a key,
the agent can open a door. NGE learns these dynamics well
and learns that if the agent lands on a tile with a key, it
changes to an agent with a key and can then interact with
a door. However if the fact that the agent is holding a key
does not change the agent tile, NGE has no knowledge of
this at the next step and therefore the information is lost.
This could be fixed by following the latent state space model
training techniques used in [13], [28] and [29] where future
observations are predicted several steps in the future without
decoding the visual information between steps.

VII. CONCLUSION

In this paper, the Neural Game Engine architecture is
proposed as a method of learning accurate forward models
for grid-world games. The Neural Game Engine architecture,
which is built upon the Neural GPU, learns a set of underlying
local rules that can be applied over several iterations rather
than stacking layers with different parameters. Improvements
to the Neural GPU architecture such as selective gating are
introduced which enable it to be applied to predicting the
forward dynamics of games. This paper shows that this method
has many advantages: fast learning time; high accuracy over
long time-horizons and fast and easily parallelized execution.
The Neural Game Engine shows higher accuracy at predicting



the state transitions in the game Sokoban when compared to
similar state space models that are used in several model-based
reinforcement learning applications. Additionally the Neural
Game Engine is shown to generalize well to different game
environment dimensions not seen during training.
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