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Abstract—In this paper, we study transformers for text-
based games. As a promising replacement of recurrent modules
in Natural Language Processing (NLP) tasks, the transformer
architecture could be treated as a powerful state representa-
tion generator for reinforcement learning. However, the vanilla
transformer is neither effective nor efficient to learn with a
huge amount of weight parameters. Unlike existing research
that encodes states using LSTMs or GRUs, we develop a novel
lightweight transformer-based representation generator featured
with reordered layer normalization, weight sharing and block-
wise aggregation. The experimental results show that our pro-
posed model not only solves single games with much fewer
interactions, but also achieves better generalization on a set of
unseen games. Furthermore, our model outperforms state-of-the-
art agents in a variety of man-made games.

Index Terms—text-based games, reinforcement learning, nat-
ural language processing

I. INTRODUCTION

Text-based games, or interaction fiction (IF) games, are
software environments where both states and actions are
described by textual descriptions [1]. To solve the games, the
agents are required to understand natural language to deduct
the objectives. Compared with typical Natural Language Pro-
cessing (NLP) tasks, sequential decision making is usually
involved in these games, where there’s no predictive label to
specify whether an action is correct or not, and the effect of
an action may last long. Text-based games are usually seen as
Reinforcement Learning (RL) tasks in the context of natural
language processing [2], [3]. Existing works on text-based
games have been focusing on the challenges including but
not limited to building representation from text [4], partial
observability [5], combinatorial action space [6] and sparse
rewards [7].

For reinforcement learning, building an effective represen-
tation generator is one of the most crucial steps to solve the
tasks. However, current models are limited in their ability to
represent varying textual data. Compared with video games
[8]-[10] or robotics tasks [11]-[13] or other NLP tasks [14],
[15], where Convolutional Neural Networks (CNNs) and Mul-
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tilayer Perceptrons (MLPs) are commonly used for input pro-
cessing, the states in text-based games are usually processed
via recurrent modules, such as LSTMs [4], [7], [16] and GRUs
[1], [17]. Recently, it has been empirically validated that the
transformer architecture with self-attention mechanism [18]
deals better with longer temporal horizons and thus provides
significant performance gains over the recurrent modules [19]—
[21]. However, they are seldom deployed in the domain of
text-based games.

In this paper, we propose a novel representation generator
to build state representation effectively and efficiently for text-
based games. Inspired by the success of transformer in many
sequential information processing domains, we argue that this
architecture is also powerful in building representations for
text-based games. We first replace the recurrent encoder in
representation generator with the vanilla transformer architec-
ture to investigate whether it is more powerful. Then, we make
a set of technical changes to the vanilla transformer to further
improve its performance. In order to make convergence faster,
we reorder the layer normalization by placing it within residual
connection [22] to provide an identity map of input towards
output. We then share the weights among all transformer
blocks to reduce the number of learnable weights. Our third
modification is to enhance residual connection via gating
mechanisms [23], [24]. Specifically, we apply block-wise gate
layer to aggregate the input and output of a block.

We evaluate our model on both text-based games generated
from TextWorld CoinCollector Challenge [2] and man-made
games supported by Jericho [1]. The experimental results show
that the proposed model achieves higher data efficiency by
requiring fewer interactions to solve the games. In addition
to the single game setting, we also evaluate the model’s
generalizability on multiple unseen games. The results show
that the proposed model succeeds to learn a general strategy
to solve the games even though the scenes have not been
observed during the training stage. In terms of man-made
games, the proposed model outperforms current agents in a
variety of games.

Our main contributions are summarized as follows:



« We are one of the first to study the transformer architec-
ture for RL framework in text-based games.

o We show that the transformer architecture is powerful for
building representations from text-based states.

« We develop a novel lightweight and easy-to-use trans-
former variant for RL games.

« We show that our model achieves good performance on
not only generated games but also man-made games.
Besides single games, our model exhibits promising
generalizability in unseen games.

II. RELATED WORK
A. Methods for Text-based games

Text-based games have captured great attention from natu-
ral language processing, natural language understanding and
reinforcement learning. The Text-Based Adventure AI Com-
petition, launched in 2016, aims to find game agents that
are capable of solving different text-based games [25]. Some
competitors, such as BYU16Agent [26], Golovin [27], CARL
[25] and NAIL [28], achieve competitive performance in the
competition by injecting game playing heuristics instead of
letting the agent learn from interaction only. For example,
NAIL [28], which won first place in 2018’s competition,
is designed with strong heuristics for exploring the game,
interacting with objects, and forming the game map to track
the states. Despite being effective as game solvers, these agents
require huge amount of prior knowledge for ideal rules and
heuristics, which is more challenging than encoding states and
learning policies from data [1].

Deep reinforcement learning has been applied to text-based
games. Specifically, LSTM-DQN [4] uses a recurrent neural
network to build state representations, and computes the Q
values of objects and verbs respectively via two output layers.
LSTM-DRQN [7] combines this idea with DRQN [29]. In
particular, a recurrent layer is incorporated into the decision
making process for partial observations. Other extensions
include the Deep Reinforcement Relevance Network (DRRN)
[16] and Template-DQN (TDQN) [1], where both the states
and the actions are processed to learn representations. Besides
RNN encoders, CNN encoders have also been applied to
process text sequences [6], [30].

Other methods engage knowledge graphs [5], [17], [28],
[31], [32], where the states and the entities are memorized
and tracked explicitly. The knowledge graph serves as a
complement of the current state, thus being helpful to handle
partial observability. However, the rules for building and
updating a knowledge graph need to be pre-defined manually,
which hinders the usage of knowledge graph-based solutions.
In contrast, we build state representations without any hand-
crafted rules, while our method can be integrated with a
knowledge graph to achieve better performance.

B. Transformers

The transformer architecture, based on the multi-head self-
attention mechanism, has been shown to outperform RNNs
in a wide range of NLP tasks such as machine translation
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Fig. 1. The RL framework, which consists of a representation generator and
an action scorer. In this work we focus on the representation generator part
(shown in red dashed box).

[18], text summarization [33], question answering [34] and
language modeling [20]. Nevertheless, it is far less applied in
the RL area where recurrent modules are used dominantly.
Zambaldi et al. [35] applied the multi-head self-attention
mechanism to capture the relations between entities in multi-
agent reinforcement learning tasks. Parisotto et al. [36] re-
placed LSTM with the transformer architecture, and proposed
further modifications to tackle the optimization problem of
a vanilla transformer. However, both LSTM and transformer
serve as memory modules instead of state representation
generators. Although the transformer is applied as part of the
state encoder in [32], it is used straightforwardly without any
analysis or optimization because the focus of the work is to
explore the usage of knowledge graphs in text-based games.
Different from the aforementioned efforts, we focus on
studying the effectiveness of the transformer in text-based
games. In particular, we investigate 1) whether the transformer
architecture could be used for generating state representations;
2) whether the optimization problem of a vanilla transformer
[37] still exists when it is used as the representation generator;
and 3) how to improve its performance in text-based games.

ITI. PRELIMINARIES

A. Overview

Similar to previous work [1], [7], [28], we formulate the
text-based games as Partially Observable Markov Decision
Processes (POMDPs). The POMDPs can be defined as a tuple
(8,A4,T,0,Q,R,~), where the state set S, action set A,
conditional transition probabilities between states 1", reward
function R and discount factor v € (0, 1] are same as the
setting of MDPs. The € is the observation set and O is
conditional observation probabilities. Different from MDPs,
the state s; in POMDP cannot be directly observed. Instead,
at each time step, the agent will receive an observation o; € €2,
depending on the current state and previous action via the con-
ditional observation probability O(o;|st, a;—1). By executing
an action a; € A, the environment will transit into a new state
based on the state transition probability T'(s;+1|s¢, a:), and
the agent will receive the reward 7411 = R(s¢, a;). Same as
MDPs, the goal of the agent in this work is to learn an optimal
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Fig. 2. (a) The proposed representation generator. (b) The modified transformer architecture, where L denotes the number of transformer blocks, LN denotes
layer normalization, multi-head attention (MHA) represents multi-head attention sub-module, and feed forward network (FFN) means feed-forward network
sub-module. We reorder the layer normalization by filling it within residual connection. All the modules within blue region share the weights. We then propose
a block-wise gate layer after each block (except the first block) to aggregate its input and output.

policy 7* to maximize the expected future discounted sum of
rewards from each time step: G, = K[y~ e 1)

We adopt a basic Q-learning framework as the backbone,
which is shown in Fig. 1. We use Deep Recurrent Q-Network
(DRQN) to solve POMDPs [29]. For simplicity, we denote
the input of agent as s;. The agent consists of two parts: a
representation generator, which is our main focus in this work,
and an action scorer. The learning objective is to estimate
the @ value Q(s¢, ar), which is the long-term expected return
for choosing an action a; at state s;. Following the Bellman
equation, the Q values can be learned iteratively with the
current reward and the max () value over all actions at next
state:

Qit1(8t,ar) :=Qi(8¢,ar) + a1+
ymax Qi(s;y1,a’) — Qi(s¢, ar)). M
a’c A
where ¢ denotes i-th update step.

Depending on different frameworks and environment set-
tings, the action a € A for text-based games can be either
word combinations (e.g. “go east” is obtained by selecting
“g0” then “east”), or templates with words (e.g. “take key from
table” is obtained by selecting template “take _ from _” first,
then selecting word “key” and “table”). Following [1], [7],
our policy estimates Q-values for all action components. For
example, for template-based action space, we estimate Q(s, u)
for all templates u € T and Q(s, p) for all words p in word
vocabulary V.

IV. METHODOLOGY

As shown in Fig. 2, we consider a transformer-based
representation generator for RL algorithms. Unlike vanilla
transformer [18] that consists of both encoder and decoder,
we apply only the encoder part and refer to it as transformer
hereafter. Based on the vanilla transformer, we propose three

techniques to improve its performance in RL tasks. First,
we reorder the layer normalization to be within the residual
connection. Then we share the weights among all transformer
blocks. Finally, we add a block-wise gate layer after each block
(except the first one) to aggregate the input and output of this
block. Similar to blocks, all gate layers share the weights. The
output of transformer will be fed into a mean pooling layer to
generate vector representation.

A. Normalization layers

Fig. 3. (a) The vanilla transformer block. (b) The proposed block, where the
layer norm is placed within residual connection.

Similar to vanilla transformer, each transformer block in
our model consists of two sub-modules: multi-head attention
(MHA) and feed forward network (FFN). Our first contribution
is layer normalization reordering, which is motivated by the
success of QA-NET [19] and TrXL-I [36]. As shown in Fig.
3, we incorporate the layer norm into the residual connection,
yielding an identity map between the input and the output of
a sub-module.

We denote the number of transformer blocks as L. For the
I-th transformer block (I € [1, L]), the input e~V ¢ RT*P
can be either the state after word embedding and positional
encoding (the first block), or the output of previous block



after aggregation, where 7' is the sequence length and D is
the embedding dimension. In MHA sub-module, after layer
normalization (LN), the embedding will be used to compute
key K; € RT*TXd query Q; € RH*T*d and value
V: € REXTxd where H is the number of heads, ¢ means
i-th head, and d = D/H. Then K, Q and V will be used
to compute H scaled dot-product attention in parallel, and be
combined as the output embedding el(f[)H A» defined as

el . = MHA(LN(e(~ D). 2)

Finally, a residual connection will be used to aggregate the
output and the identity map of the input:

eDyma = e~V + ReLU(e!), ). 3)

In FFN sub-module, there are similar operations after LN. The
input will be processed by fully connected layers, and then
aggregated with its identity map to obtain the output of this
block e € RT*P defined as

e® = ey + ReLU(FEN(LN(eDya))).  (4)

B. Weight sharing

Our second effort is to seek methods to construct a
lightweight transformer. The transformer variants used in
general NLP tasks are complex with large amounts of learnable
weights [20], making it less efficient to optimize. This problem
could be more salient in RL, where the dataset is not fixed so
that the agent has to spend more interactions to get enough
training data. Inspired by ALBERT [38], we apply the weight
sharing to reduce the learnable weights, for the purpose of
improving parameter efficiency and data efficiency. As shown
in Fig. 2 (b), the blue region indicates that we share the weights
among all transformer blocks. In other words, this modification
makes the representation extraction process along L blocks
similar to extracting information recurrently for L times by
only one block. In this way, we can increase the depth of model
while keeping the number of weights friendly to optimize. In
addition to the transformer blocks, we also share the weights
among block-wise gate layers.

C. Block-wise gate layer

Besides the modifications within the transformer block, we
further enhance residual connection via block-wise aggrega-
tion operations after each block (except the first one). We get
insight from the GTrXL [36], where gating methods are used
to substitute the adding aggregation in the block to enhance
learning stability. Different from their work, we keep the
adding operation and apply the gating mechanism between
the blocks. Specifically, we apply a gated output connection,
where the weight factor computed from the input stream is
assigned to the output stream. For the [-th block with input
stream e‘~1) and output stream e(*), the output of gate layer
is computed as:

eV =el=V 4 o(W,el™V +-b,) © e, &)

where W, and b, are learnable variables, and o is the Sigmoid
function. We restrict that both the input and the output have
been processed by at least one block. Consequently, there is
no gate layer after the first block.

V. EXPERIMENTS
A. Experiment setting

We evaluate our model on two text-based game domains:
procedurally-generated games supported by TextWorld’s Co-
inCollector Challenge [2] and man-made games supported by
Jericho [29]. Each game in CoinCollector domain contains
a number of randomly connected rooms, where a coin is
placed in one of them, and the goal is to find and pick up
this coin within the step limit. The tasks are associated with
sparse reward so that the reward will be 1.0 only if the coin
is collected successfully, otherwise 0.0. An episode will be
terminated if the coin is collected or the step limit is exceeded.
The difficulty depends on the number of rooms, the quest
length (i.e., the length of optimal trajectory) and the number
of distractor rooms leading to dead ends. We define a game
by its level and difficulty mode, where the level denotes the
length of the optimal trajectory. We consider two difficulty
modes: Easy — no distractor room, and Hard — each room
in the optimal path has two distractor rooms. For example,
“L30E” denotes level 30, mode easy.

The games generated by CoinCollector are relatively simple
for initial study and parameter tuning because the quest length
is customizable and the size of action set is small. Besides,
the generated games share the same goal and the same solving
strategy (with different layouts such as room connectivities),
making it feasible to evaluate the generalizability of the
proposed method on unseen games. We thus perform two
branches of experiments in this domain: single game and
multiple unseen games. The single game is similar to general
RL settings, where the agent will be trained and validated
on the same game. In terms of multiple unseen games, we
generate two non-overlapping sets of games for training and
evaluation, respectively. Table I summarizes the games. For
each branch, we conduct experiments with varied difficulties.

TABLE I
THE DETAILS OF GENERATED GAMES IN COINCOLLECTOR DOMAIN.

Task name L30E L30H L40E
Rooms 30 90 40
Quest length 30 30 40
Single Vv Vv

Multiple unseen vV v

We also conduct experiments on a variety of classic man-
made games. These games have much larger state space and
action space, involving more complex logic. For example,
the game zorkl contains 697 words in the action vocabulary
such that a four-word-action consists of |697|* choices, while
the walkthrough contains 130 actions used in 345 steps.
Current agents, even when being integrated with huge external
knowledge and engineering tricks, are still far from being able
to solve most of these games [1], [6], [28], [30]. In this work,



we aim to provide our transformer-based state representation
generator as an easy-to-use plugin to help existing and future
agents to achieve better performance.

B. Baselines

For CoinCollector domain, we use LSTM-DRQN [7] as the
backbone module' and name our proposed model as Trans-v-
DRQN. We construct the following three baselines:

o« LSTM-DRQN [7]: LSTM-based representation generator.
« CNN-DRQN: CNN-based representation generator mod-
ified from CNN-DQN [30].
o Trans-DRQN: Vanilla transformer-based representation
generator with parameter tuning only.
For Jericho domain, we use DRRN [16] as the backbone
module ? and name our model as Trans-v-DRRN. We construct
the following three baselines:

« DRRN [16]: an extension of LSTM-DQN where the valid
actions are presented at every state.

« TDQN [1]: an extension of LSTM-DQN with template-
based action spaces.

o KG-A2C? [17]: an extension of TDQN combined with
knowledge graph and auxiliary task of valid action pre-
diction.

All of the models are trained from scratch. We leave the
combination with pre-trained language models as a part of
future work.

C. Implementation details

For CoinCollector domain, the hyper-parameters of LSTM-
DRQN are same as those in the original paper [7]. Both
Trans-DRQN and Trans-v-DRQN are modified based on the
transformer example in Pytorch’s documentation*, where we
simplify the encoder by reducing the word embedding dimen-
sion, the number of heads in MHAs, the dimension of the
linear layer in FFNs, as well as the number of repeated blocks.
Considering that the word vocabulary size is 1250 and the
word embedding size is 20, which are relatively small, we use
single-head self-attention in the blocks. The FFN part consists
of a fully-connected layer with the hidden dimension of 100.
The Trans-v-DRQN contains 4 blocks while the Trans-DRQN
achieves better performance with 2 blocks. The encoder part
of CNN-DRQN is modified from [30] so that it contains 3
convolutional layers with kernel size of 3, 4, 5, respectively.
Following the original paper [7], all models apply the same
DRQN action scorer and the episodic discovery bonus. The
1.0 reward bonus will be assigned if the current state is seen
for the first time.

For Jericho domain, the hyper-parameters of DRRN, TDQN
and KG-A2C are taken from [1], [17]. The architecture of
Trans-v-DRRN is similar to DRRN, except that we replace the
3 GRUs, which are used for processing the narrative text, the

Ihttps://github.com/xingdi-eric-yuan/TextWorld-Coin-Collector

2Both DRRN and TDQN are based on https://github.com/microsoft/tdgn

3https://github.com/rajammanabrolu/KG-A2C

“https://pytorch.org/docs/stable/_modules/torch/nn/
modules/transformer.html

players inventory and the location description, with a shared
transformer encoder equipped with proposed modifications.
The word embedding size is 128 and the transformer is
configured with 4 heads, 4 blocks and 128 hidden dimension.

D. Training details

For CoinCollector domain, all models use Adam optimizer
with a learning rate of 0.001 and a gradient clip of 5. We
apply prioritized replay buffer with size 500000, where the
batch size during updating is 32. For all games, we set step
limit as 50 and denote an epoch as the model running on each
environment for one episode. For single games, we generate
10 same environments. We use the e-greedy method to select
the action, where € is the probability to choose a random
action and it anneals from 1.0 to 0.2 in 1000 epochs during the
training. For multiple unseen tasks, we follow similar settings
in [5] to generate a training set of 200 games and a testing
set of 20 games, where one environment is generated for each
game (i.e., 200 episodes per epoch), and the e anneals from
1.0 to 0.2 in 50 epochs. All the experiments are run with 3
random seeds.

For Jericho domain, we select 15 games and set step
limit as 100 valid steps or game over/victory. Similar to the
baselines, we tune the hyper-parameters on zorkl, then hold
them fixed across other games. For each game, we generate 8
environments in parallel and train Trans-v-DRRN for 100000
update steps. We use Adam optimizer with a learning rate of
0.0001 and a gradient clip of 5. We apply replay buffer with
size 500000, where the batch size during updating is 64. The
setting for baselines is same as original implementation. All
of the experiments are run with 5 random seeds.

E. Evaluation metrics

Same as the existing RL-related works, we measure all
games with episodic sum of rewards. For Jericho domain, we
report the average result of last 100 episodes. For single games
in CoinCollector domain, we also report the number of training
epochs required to achieve maximum reward sum (i.e., 1.0).

VI. RESULTS AND DISCUSSIONS
A. CoinCollector: single game

Fig. 4 shows the performance of single games in CoinCol-
lector domain. While the learning process of LSTM-DRQN is
slow and lacking of stability, the CNN-based and transformer-
based models achieve higher learning speed. Since all the
compared models succeed to reach the maximum reward sum,
we report the number of epochs required to achieve this. As
shown in Table II, the proposed Trans-v-DRQN requires the
fewest number of interactions among all models, showing high
data efficiency. The advantage is more obvious in hard tasks
with distractor rooms. A possible reason is that the modified
transformer helps to extract key information to recognize and
understand the state, such as the previous action and the
direction related words in description.

To systematically validate our model, we perform ablation
study to investigate the importance of each of the three
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TABLE I
THE REQUIRED EPOCHS TO REACH THE MAXIMUM REWARD SUM.
Model L30E L30H
LSTM-DRQN  920.00 £ 72.57  1306.67 & 203.36
CNN-DRQN 710.00 + 24.49  1040.00 £ 24.49
Trans-DRQN 643.331+49.89 1000.00 £ 58.88

Trans-v-DRQN  636.67 £+ 17.00 866.67 + 33.99

proposed modifications. The results are reported in Table III,
where “-X” means that the modification of “X” is removed
from Trans-v-DRQN. We observe that weight sharing con-
tributes the most — the performance drops most significantly
if removing this technique (e.g., comparing “-gate” v.s. “-gate
-shareW”, and “-gate -reorderLN” v.s. “-gate -reorderLN -
shareW”). The block-wise gate layer also helps to improve
performance (e.g., comparing “Trans-v” v.s. ‘“-gate”). Our
model is benefited least from layer normalization reordering.
Slight improvement can be observed when it’s applied together
with weight sharing (e.g., comparing “-gate -reorderLN” v.s.
“-gate”). However, the performance even degrades when it is
applied alone (e.g., comparing “-gate -shareW” v.s. “-gate -
reorderLN -shareW”).
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TABLE III
THE PERFORMANCE OF MODELS WITH DIFFERENT MODIFICATIONS.

Model L30H

Trans-DRQN 1000.00 + 58.88
Trans-v-DRQN (full) 866.67 + 33.99
-gate 920.00 + 29.44
-gate -reorderLN 940.00 4 58.88
-gate -shareW 1050.00 + 92.74

-gate -reorderLN -shareW

1016.67 + 37.71

TABLE IV
THE MAXIMUM REWARDS ACHIEVED IN MULTIPLE UNSEEN GAMES.
Model L30E L40E
LSTM-DRQN 0.88 + 0.09 0.85 £+ 0.04
CNN-DRQN 0.88 + 0.06 0.60 £ 0.25
Trans-DRQN 0.82 +0.05 0.80 £ 0.05
Trans-v-DRQN  0.88 + 0.06  0.92 + 0.06

B. CoinCollector: multiple unseen games

Fig. 5 shows the generalization performance for multiple
domain. For “L30E” tasks,
the transformer based models make progress faster than LSTM
and CNN based models. However, the performance of Trans-
40th epoch and eventually
models. One possible reason
when being deployed as a

unseen games in CoinCollector

DRQN starts to drop after the
fails to reach the levels of other
is that, the vanilla transformer,



TABLE V
THE PERFORMANCE ACROSS 15 JERICHO SUPPORTED GAMES.

Game | |[T] |V] | TDQN KG-A2C DRRN Trans-v-DRRN | MaxReward
acorncourt | 151 343 1.6 0.3 10 10 30
adventureland | 156 398 0 0 20.6 25.6 100
affilicted | 146 762 1.3 - 2.6 2.0 75
detective | 197 344 169 207.9 197.8 288.8 360
enchanter | 290 722 8.6 12.1 20.0 20.0 400
library | 173 510 6.3 143 17 17 30
ludicorp | 187 503 6 17.8 13.8 16 150
pentari | 155 472 17.4 50.7 272 34.5 70
reverb | 183 526 0.3 - 8.2 10.7 50
spellbrkr | 333 844 18.7 21.3 37.8 40 600
temple | 175 622 79 7.6 7.4 79 35
tryst205 | 197 871 0 - 9.6 9.6 350
zorkl | 237 697 9.9 34 32.6 36.4 350

zork3 | 214 564 0 0.1 0.5 0.19 7

ztuu | 186 607 4.9 9.2 21.6 4.8 100

representation generator, is prone to be overfitting which leads
to performance drop in unseen tasks. For “L40E” tasks with
longer quest length, the advantage gained by Trans-v-DRQN
becomes more significant. While its score starts to exceed
0.6 at the 50th epoch and finally goes over 0.8, the baselines
learn much slower (one epoch contains approximately 10,000
interaction steps) and show worse performance. Additionally,
we observe that while CNN-DRQN performs the worst and
fails to reach convergence within 60 epochs, our model as
well as other two baselines encounters performance drop after
reaching the highest performance, which is probably caused
by overfitting. Table IV reports the maximum scores that can
be be achieved by the compared models, which shows again
the proposed Trans-v-DRQN performs best.

C. Jericho-supported games

zorkl

Episode reward
N
o
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20000 40000 60000 80000 100000

Fig. 6. The performance with respect to update steps on zorkl.

Table V shows the performance across 15 man-made games
in Jericho domain, where |7| and |V| denote the number
of templates (for template-based methods such as TDQN
and KG-A2C) and the size of action vocabulary. Our model,
Trans-v-DRRN, achieve the highest score in 10 games. When
compared with the backbone model DRRN, which is already
a strong baseline in Jericho domain, our model brings perfor-
mance improvement in 8 games. In another 4 games, Trans-v-

DRRN’s performance is comparable with DRRN by achieving
equivalent results. We further compare the learning curve for
zorkl. As shown in Fig. 6, while Trans-v-DRRN starts to
make progress a little slower than DRRN and KG-A2C, its
performance keeps increasing and becomes the highest at
the end of learning. Besides, we observe that the backbone
model DRRN encounters performance fluctuation along with
the progress of the learning process. The integration of our
transformer-based representation generator helps to overcome
this problem, which in turn boosts the performance.

VII. CONCLUSION

In this paper, we investigated how the transformer architec-
ture could be used for enhancing deep reinforcement learning
in solving text-based games. We focused on building state
representation and introduced a lightweight transformer-based
representation generator featured with layer normalization
reordering, weight sharing and block-wise gate layers. The
experimental results on generated games show that our model
not only solves the single task with fewer interactions, but
also achieves better generalizability in solving unseen tasks.
Furthermore, our model outperforms current state-of-the-art
agents in a variety of man-made games. With respect to the
future work, we would like to focus on the zero/few-shot
generalizability on more complex tasks. While current model
is trained from scratch, in the future we would also like to
combine our model with pre-trained language models [20],
[38] to obtain better commonsense reasoning ability, thus
further exploit its potential.
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