Bootstrapping Conditional GANs for Video Game
Level Generation

Ruben Rodriguez Torrado
Game Innovation Lab
New York University - OriGen.Al
Brooklyn, USA
rubentorrado @origen.ai

Niels Justesen
IT University of Copenhagen
Kgbenhavn, Denmark
njustesen @ gmail.com

Abstract—Generative Adversarial Networks (GANs) have
shown impressive results for image generation. However, GANs
face challenges in generating contents with certain types of
constraints, such as game levels. Specifically, it is difficult to
generate levels that have aesthetic appeal and are playable at
the same time. Additionally, because training data usually is
limited, it is challenging to generate unique levels with current
GAN:Ss. In this paper, we propose a new GAN architecture named
Conditional Embedding Self-Attention Generative Adversarial Net-
work (CESAGAN) and a new bootstrapping training procedure.
The CESAGAN is a modification of the self-attention GAN that
incorporates an embedding feature vector input to condition
the training of the discriminator and generator. This allows the
network to model non-local dependency between game objects,
and to count objects. Additionally, to reduce the number of
levels necessary to train the GAN, we propose a bootstrapping
mechanism in which playable generated levels are added to the
training set. The results demonstrate that the new approach does
not only generate a larger number of levels that are playable but
also generates fewer duplicate levels compared to a standard
GAN.

Index Terms—Generative Adversarial Networks, Conditional
Embedding, Self-Attention, Bootstrapping, General Video Game
Framework, Functional Content Generation, Procedural Content
Generation

I. INTRODUCTION

Procedural Content Generation (PCG) is a term defining
methods in which content for games or simulations is created
using programmatic means. Procedural Content Generation via
Machine Learning (PCGML) is a PCG approach in which a
machine learning component is trained on existing content to
generate new game content [1] such as platform levels [2],
strategy game maps [3], and collectible cards [4]. Different
types of machine learning algorithms can be used, as long as
they learn some aspect of the distribution of the training set in
such a way that new content can be sampled from the model.
Machine learning algorithms for PCGML include statistical

978-1-7281-4533-4/20/$31.00 ©2020 IEEE

Ahmed Khalifa
Game Innovation Lab
New York University

Brooklyn, USA
ahmed @akhalifa.com

Sebastian Risi
IT University of Copenhagen
Kgbenhavn, Denmark
sebastian.risi@gmail.com

Michael Cerny Green
Game Innovation Lab
New York University-OriGen.Al
Brooklyn, USA
mike.green @nyu.edu

Julian Togelius
Game Innovation Lab
New York University - OriGen.Al
Brooklyn, USA
julian@togelius.com

methods such as n-grams [5], Markov chains [6], recurrent
LSTM networks [2], and convolutional networks [7].

Research on PCGML is only a few years old, spurred
on by the recent advancements in machine learning models
for creative or generative tasks such as generating faces [8],
music [9], or text [10] with impressive results. At first glance,
it seems reasonable that the same methods could be used to
generate content such as levels, characters, or quests for your
favorite game. However, there are some crucial differences and
challenges when dealing with game content.

The first difference is data scarcity. When training a machine
learning model to create lifelike faces, coherent news stories
or harmonious music, training data is abound. It is easy to find
thousands of training examples, and deep learning models in
particular achieve increasingly better results with more training
data. However, for most games, only a limited amount of
content exists. Super Mario Bros (Nintendo, 1985) has a few
dozen levels, Mass Effect (BioWare, 2007) probably less than a
hundred named characters, Skyrim (Bethesda, 2011) only tens
of non-trivial quests, and Grand Theft Auto V (Rockstar, 2013)
a handful of car models and weapon types. Only relatively
few games have user-made content of sufficient quantity and
quality to make for a good training set, and this content is
often not publicly available (e.g. the level corpus from Super
Mario Maker).

The second difference is that many types of game content
(in particular necessary content [11]) have functional require-
ments. A picture of a face where one eye is smudged out is still
recognizably as a face, and a sentence can be agrammatical and
misspelled but still readable; these types of content do not need
to function. In contrast, game levels, in which it is impossible
to find the key to the exit are simply unplayable, and it does
not matter how aesthetically pleasing they are. The same holds
true for a ruleset, which does not specify how characters move,
or a car where the wheels do not touch the ground. In this
respect, it is useful to think of most game content as being
more like program code than like images. The problem is

that most generative representations are not intrinsically well-
suited to create content with functional requirements. Many
such functional requirements depend on counting items or
non-local relation and these are hard to capture with standard
network architectures.

One way of addressing the problem of functional require-
ments is to combine PCGML with a search-based approach,
exploring the space learned by a trained model rather than
just sampling from it. In particular, Latent Variable Evolution,
originally invented to produce fingerprints able to bypass
authentication schemes [12], was successfully used to generate
Super Mario Bros level segments with functional proper-
ties [7]. However, it is desirable to have a model learn the
functional requirements, regardless of whether we later choose
to generate through random sampling or search.

This paper introduces a new PCGML method that seeks
to incorporate functional requirements while at the same time
mitigating training data scarcity. At the core of this method is
a new GAN architecture, the CESAGAN, which incorporates
self-attention to capture nonlocal spatial relationships and a
conditional input vector. In order to help the GAN learn
functional requirements, we input to the network not only
the raw level geometry but also aggregates of level features.
Levels are generated through sampling the generator network,
and all generated levels are tested for playability. Levels that
are playable, and sufficiently different from the levels in the
training set, are added to the training set for continued training
of the GAN. This way, the training set is bootstrapped from
a very small number of levels to a much larger set.

II. RELATED WORK

This section discusses a general overview of procedural con-
tent generation (PCG), followed descriptions of applications of
GAN-based level generation in video games.

A. Procedural content generation

PCG refers to the use of computer algorithms to produce
content. These techniques have played an important role in
video games since the early eighties, with such examples as
Rogue (Glenn Wichman, 1980), Elite (David Braben and Ian
Bell, 1984), and Beneath the Apple Manor (Don Worth, 1978).
An important reason for the early popularity of PCG in games
is its the ability to produce large amounts of content with a
negligible memory cost, fitting on a small floppy disk [13].
Important recent games employing PCG include Spelunky
(Derek Yu, 2008), The Binding of Isaac (Edmund McMillen
and Florian Himsl, 2011), and No Mans Sky (Hello Games,
2016).

Designers and developers are using PCG [14] for a variety
of different purposes, such as tailoring game contents to the
player’s taste, assisting creative content generation, reducing
the time and cost for designing and developing games, explor-
ing new types of games, or understanding the design space
of games. PCG can be used to generate any type of content
from textures to game rules. Some types are easier than the
others, such as generating vegetation (trees, bushes etc) in

games (Interactive Data Visualization Inc, 2000) [15]. While
level generation might seem like a trivial problem, as it has
been used since the early days of video games, this is not
the case. Most known level generation algorithms are tailored
to generating content for a particular game [16, 17] using a
significant amount of game or genre specific knowledge to
make sure the generated levels are playable and enjoyable.
Recently, there has been an increase in the development
of generalized PCG algorithms that can work on multiple
games [18]. Search-based Procedural Content Generation (SB-
PCG) [11] methods use search algorithms to generate levels,
applying simulations and automated playthroughs to validate
the generated content. Procedural Content Generation via Ma-
chine Learning (PCG-ML) [1] methods use (small) example
sets of levels to train on, after which they generate new levels.
This paper proposes a new PCG-ML approach as a solution
to the small training set used in PCG-ML methods allowing
the algorithms to learn better models for level generation.

B. Generative Adversarial Networks

The architecture of a Generative Adversarial Network
(GAN) [19] can be understood as an adversarial game between
a generator (G), which maps a latent random noise vector to
a generated sample, and a discriminator (D), which classifies
generated samples as real or fake. These adversaries are trained
simultaneously, striving towards reaching a state where the
discriminator maximizes its ability to classify correctly and
the generator learns to create new samples that are good
enough to be classified as genuine. GANs became popular
in recent years due to their impressive results in tasks such
as image generation. However, training GANSs is not a trivial
procedure: the training process is often unstable, where the
generator produces unrealistic samples, or the discriminator
is no more accurate than a coin toss. For these reasons,
many extensions have been proposed to improve the training
process and the quality of the results. For example, Mirza and
Osindero [20] feed a vector y to train G and D conditioned to
generate descriptive tags which are not part of training labels.
In addition, Bellemare et al. [21] proposed a new training
methodology to grow both the generator and discriminator ar-
chitecture complexity progressively, reaching a higher-quality
on the CELEBA dataset.

More recently, high-quality results have been reported using
attention mechanisms in deep learning [22]. Attention mech-
anisms are a very simple idea that identifies the most relevant
variables dynamically in more complex deep neural network
architecture such as, convolutional neural network (CNN).
Recently, Zhang et al. [23] combined attention mechanism and
GANSs to generate and discriminate high-resolution details as
a function of only spatially local points in lower-resolution
feature maps.

In this paper, we propose a new GANs architecture which
combines both ideas, conditional GANSs and attention mecha-
nisms, in other words, we combine attention mechanisms with
conditional GANSs in order to improve the quality and diversity
of generated levels.

[

1x1 conv
9(x)
levels ERREEN
)

|:|) f—‘ transpose n

softmax

attention map self-attention feature map

V(x)

—|

1x1 conv

E} concat

1x1 conv
\] h(x) f_‘

1x1 conv

N w H
u

Embedding layer |:|
features vectors (u)

features Embedding Mapping

Fig. 1: The architecture for our Conditional Embedding Self-Attention Generative Adversarial Network (CESAGAN). The
approach combines a SAGAN architecture (top), with a conditional embedding for the feature information vector u (bottom).
We concatenate the feature embedding mapping and the self-attention feature map to combine SAGAN with the conditional
vector representation u. This network is applied to both the generator (G) and discriminator (D)

C. PCG and GANs

Volz et al. [7] and Giacomello et al. [24] first introduced the
idea of unsupervised learning techniques for PCG. Giacomello
et al. [24] trained a GAN to create plain level images for
DOOM by combining image and topological features extracted
from human-designed content. Though this methodology gen-
erates realistic levels from the topological point of view, the
playability of the generated levels was not tested.

Volz et al. [7] combined GANSs with latent variable evolution
(LVE) [25] to optimize the input latent vector of a GAN
generator to create levels for Mario Bros. Deep Convolutional
GANs (DCGANs) were adapted to generate levels, and CMA-
ES searched in the space of latent vectors. The results demon-
strated that it is often possible to generate both realistic and
playable levels for Mario Bros video game. In this paper, we
are comparing our method with the approach introduced by
Volz et al. [7].

Hu et al. [26] tackled the problem of generating content that
follows certain constraints by introducing the constraints as a
part of the loss function using a regularization method. This
approach helps the trained model to battle the problem of the
functional content but doesn’t help to increase the diversity of
the generated content. In contrast to Hu et al, our new work
introduces constraints as part of the network architecture in
the conditional embedding layer to overcome the functional
content challenge.

D. General Video Game Al Framework

The General Video Game Artificial Intelligence frame-
work [27] (GVG-AI) is a framework built to run 2D arcade-
like games written in Video Game Description Language
(VGDL) [28]. Originally developed for game-playing com-
petition, GVG-AI has since evolved to be a primary faucet
for a variety of research projects and competitions [27]. These

competitions and projects have resulted in the creation of more
than 200 controllers and well over 120 games.

III. METHODOLOGY

GANSs have proven very successful in generating images
and similar types of content that do not have structural and
functional representation. However, when generating game
levels, simple GAN approaches have several shortcomings,
which the method presented in this paper tries to overcome:

1) Reducing the amount of information necessary to train
the discriminator; most games have just a few human-
designed levels available to form a training set.

2) Increasing quality; GANs often generate levels with low
quality that are sometimes unplayable.

3) Increasing diversity; the diversity and number of
unique generated levels are limited with previous ap-
proaches [7].

We approach challenge 1 with a bootstrapping technique and
challenge 2 with a new GAN architecture. Both of these
techniques also make strides towards Challenge 3.

A. Conditional Embedding Self-Attention Generative Adver-
sarial Networks (CESAGANs)

Previous GAN-based models for level generation are built
using convolutional layers. A convolutional layer is a local
operation whose correlation depends on the spatial size of
the kernel. For example, in a convolution operation for level
generation, it is hard for an output on the top-left position to
have any correlation to the output at bottom-right. A deep
convolution network with many layers would be required
which will increase the large search space.

This phenomena has become larger for video games level
generation where just three tiles/pixels located far away from
each other (e.g. avatar-door-key) must be correlated to generate
a playable level. An intuitive solution to this problem could

be reduce the kernels sizes and layers located deeper in the
network to be able to capture this relationship later. However,
this approach would increase the number of layers of the deep
neural network significantly and thus make the GAN training
more unstable [29, 30].

One potential method that could keep balance between
efficiency and capturing long-range dependencies is a self-
attention GAN (SAGAN). A Self-attention GAN [31] is based
on three different vectors: query (f), key (g) and value (h)
which are three different mappings (e.g. output of a single
perceptron neural network) of the input data (e.g. an image)
1. The query and key undergo a matrix multiplication then
pass through a softmax, which converts the resulting vector
into probability distribution attention map. This attention map
determines the weight of each of the tiles and keep it in
memory. Finally, the attention map is multiplied by the value
to determine the relationship at a position in a sequence by
attending to all positions within the same sequence.

In our experiments, we adapt self-attention GANs [23]
for video game level generation. The mechanism is shown
in Figure 1. The one-hot tile level representation from the
hidden layer is transformed into two feature spaces f and g to
compute the attention, where f(x) = Wy and g(z) = Wy
are the query and key. We transpose the query and matrix-
multiply it by the key, s;; = f(x;)Tg(z;) and take the
softmax on all the rows in order to calculate the attention
map:

exp(si, ;)
Biis = m o
> iz exp(si;)
As we described above, (3;; indicates the correlation at a
position ¢ when mapping the area j. Finally, the output of
the attention layer is o; = U(Z?}:l Bj.:h(z;)), where v and
h are the output of the 1x1 convolutional future. This self-
attention map layer helps the network capture the fine details
from even distant parts of the image and creates a memory
for future correlations.
In SAGAN, the attention module has been used to train the
generator and the discriminator, minimizing the hinge version
of the adversarial loss [23]:

LD == E(wty)pdata [mm(O, -1 + D(J}, y))]
= E2) e (9) paara M0, =1 + D(G(2),y))]

(D

2

D(G(2),y), 3)

where 2z is the latent vector. However, this architecture
does not guarantee that the generated levels respect different
playability-required features such as a minimum/maximum
numbers of different type of objects.

For that reason, we extend SAGANS to train the generator
and discriminator conditioned to an auxiliary information input
feature vector u of each level. As vector u we are using
the the count of each unique tile of the target levels. The
mapping representation of the feature vector u into the self-
attention map is learned by a neural network (the embedding

LG = —E(z)_’px(y),pdam

network) during the supervised training process of SAGAN.
The embedding network transforms the vector u into a new
feature continuous space (an embedding representation) ¢(u),
where t(u) = Wiu.

Embedding representations reduce memory usage and speed
up neural network training when compared with more tradi-
tional representations of auxiliary information (feature vec-
tor u) such as a one-hot encoding [32]. In addition, the
new representation of v in the embedding space enables the
correlation of similar values of categorical variables. Such
correlations are more difficult to capture with a simple one-hot
representation. This allows the new representation to find more
general patterns of the feature vector and therefore allows the
SAGAN architecture to generalize better.

The output of the embedding mapping ¢(u) is concatenated
with the output of the attention layer o(i), conditioning the
adversarial loss functions 2 and 3 to the input feature vector
u:

Lp = =E(a.4) paer, 100, =1 + D((z,y)u))]
~ B(2).p0).paara [ME0(0, =1 + D((G(2), y))]

Finally, The CESAGAN network uses 1x1 convolutions
in the discriminator and 1x1 deconvolutions or transposed
convolution layer in the generator. Additionally, we employ
batchnorm both in the generator and discriminator after each
layer and ReLU activations. For the conditional embedding
layer, we use a simple fully connected layer that is concate-
nated with the self-attention feature map. Each type of tile is
encoded with an ASCII character in the textual representation
of the level and uniquely mapped to a numerical identity.

4)

Le = =E@) po()paaa P(G(2), y)[0) ©)

We call the proposed method Conditional-Embedding Self-
Attention Generative Adversarial Networks (CESAGAN) (Fig-
ure 1). It is important to note that the additional conditioning
input of CESAGAN enables the production of levels using
specific input information such as number of enemies and
player avatars. In other words, the new architecture gives
significantly more control to generate game content such as
levels with desired characteristics and extends the application
areas PCG can be applied to.

B. Bootstrapping

Our new architecture CESAGAN has the potential to im-
prove the playability of generated maps. However, we still
require a considerable number of levels to train the discrim-
inator in order achieve diversity in the generated output. For
that reason, we have proposed a bootstrapping mechanism to
improve the efficiency of CESAGAN architecture explained
above. This bootstrapping mechanism takes advantage of built-
in game properties that are shared with other types of computer
programs, particularly the fact that they can be checked for
functionality by attempting to play/execute them. This differ-
entiates game levels from other domains, like pure images.

. Add to level training corpus

Initially small

foatures Embodd

® Playable?

wwwwww

number of levels

Generator

Fig. 2: Conditional Embedding Conditional Self-Attention Generative Adversarial Network (CESAGAN) with bootstrapping.
The bootstrapping mechanism increases the number of training examples after passing a playability and diversity test.

Bootstrapping improves the quality of the GAN’s discriminator.

Fig. 3: Examples of generated levels by random sampling the trained CESAGAN with bootstrapping. The top four levels are
levels that staisfy the constraints while the lower one break them.

After each epoch, a new set of levels is generated, on which
a playability and duplicate analysis are carried out to identify
unique playable levels. We propose a set of heuristics for the
playability test which is detailed in the Experiments section.
In order to identify duplicates levels, we propose the following
workflow inspired by Valladao et al. [33]:

1) We project all the levels generated in a 2-D spaces using
PCA; we denominate the new 2D space as {2

2) We run k-means algorithm to divide our 2-D generated
levels in k clusters. In order to identify an optimum
number of clusters (k), we use Elbow method. The elbow
method run the k-means algorithm with different values
of k (for instance between 1 to 1,000 clusters) and picks
the k that minimize the intra-cluster variation.

3) Finally, the level which is closer to the centroid of each
cluster is selected as representative level obtaining the
set of non duplicated levels Q ca

After this workflow, Q) is added to the initial set of training
data, transforming pgqiq to p:iam for training the generator
and the discriminator for the next epoch (see Figure 2). This
technique doesn’t check duplicates between the generated
levels and the current training data set. This might cause
some duplicates between the new added levels and the current

training data which we decided to investigate in future work.

IV. EXPERIMENTS

Generator and discriminator are trained with RMSprop with
a batch size of 32 and the default learning rate of 0.0001 for
10,000 iterations. To train the discriminator we used two sets
of training levels. The first one consists of 45 human-designed
levels, including the five levels that come with the GVGAI
framework, while the second one only consists of the five
human-designed levels from the GVGAI framework. Figure 4
shows some examples of the training data, where the top five
images are the levels that come with the GVGAI framework.

Tile type | Symbol | Identity
Wall w 0
Empty . 1
Key + 2
Exit door g 3
Enemy 1 1 4
Enemy 2 2 5
Enemy 3 3 6
Player A 7

TABLE I: Mapping of Zelda encoding tiles. Each symbol is
encoded as a on-hot encoding for the GAN.

Fig. 4: Example of human designed levels used for training. The 5 levels shown at the top are the ones that come with the

GVGAI framework.

25 30
Average Hamming Distance

Fig. 5: Distribution of the average hamming distance and different game tiles for CESAGAN, GAN, and Human Levels.

To evaluate the presented approach we use the game Zelda
from the GVGALI environment [34]. This game is a VGDL port
of the dungeon system from “The Legend of Zelda” (Nintendo,
1986). In this game, the player needs to collect a key and reach
the exit door without getting killed by the moving enemies.
The player can kill the enemies using their sword for extra
points. Table I shows the encoding for the tiles in Zelda. Our
baseline is the adaptation of GAN architecture proposed by
Volz et al. [7] for Zelda (now adapted to Mario levels). In
order to compare both approaches we generated 15,000 levels
for both models.

For the bootstrapping playability check, the following seven
heuristics are used; they are based on our knowledge about the
game to ensure playability (Figure 4):

o There is only one player avatar.

o There is only one key.

o There is only one door.

« Enemies cover less than 60% of the empty space (it is
harder to beat the level when there are too many enemies)

o The avatar can reach the key using an A* algorithm.

o The avatar can reach the door using an A* algorithm.

o The level has a border of walls to prevent the avatar and
enemies to go outside the level.

For the conditional vector u, we are only using the number
of player, key, and door tiles described in table I. These
tiles are selected not only because of their relevance to
game playability: the addition of other tiles might restrict the
generator’s possibility space and will not allow it to find new
interesting levels.

For more generality, one could use automated game playing
agents. For example, our system could have used a planning

Model Results with 45 train.ing levels
Playable levels | Duplicated levels

Baseline GAN 19.4% 39.4%

CESAGAN 58% 37.6%

TABLE II: Comparing Ratios of playable and duplicated levels
with a training set of 45 levels w/o bootstrapping. The ratio
are calculated based on 15,000 levels from the generator.

agent from the GVGAI framework [27] to check for playa-
bility, rather than heuristics. However, doing so would have
increased the amount of time that it takes to train, as the agents
have to play each level.

V. RESULTS

In order to evaluate the efficiency of the GAN models,
generated levels are tested for playability and duplication
for CESAGAN with and without bootstrapping. They are
compared with the state-of-art techniques below. We define
two sets of training data: (1) five human-designed levels and
(2) 45 human-designed levels. For the first set, these five levels
are the levels that comes with the original GVGAI framework.
The extra 40 levels are later designed by students and added
to the corpus.

Table II shows the results for CESAGAN without any
bootstrapping using a total of 45 Zelda levels as training data.
The CESAGANSs architecture improves upon both metrics
against state-of-art techniques. These results show the potential
of the new architecture to improve the playability of generated
artifacts. However, the number of duplicate levels has the same
order of magnitude with respect to the state-of-art.

Training on 45 levels is likely not realistic for the majority
of video games; just a few human levels are usually avail-

Results with 5 training levels
Playable levels | Duplicated levels
24.6% 98%
37% 88%
42% 57%

Model

Baseline GAN
CESAGAN
CESAGAN + boostrapping

TABLE III: The ratios of playable and duplicated levels using
five levels in the training set with/without bootstrapping. The
ratio are calculated based on 15,000 levels from the generator.

able to train for most games. For this reason, CESAGAN
with bootstrapping is trained on just five human-designed
levels. The results (Table III) demonstrate that the approach
increases the percentage of playable levels, while reducing
the number of duplicates considerably. In addition, if we
compare CESAGAN and CESAGAN with bootstrapping we
observe that bootstrapping reduce dramatically the number of
levels duplicated and also help towards increasing playability.
Finally, these results show how both mechanism benefit each
other, in other words, bootstrapping mechanism improves the
number of playable levels getting by CESAGAN operator
alone. By looking on both tables (Table II and III), we find
that the percentage of playable levels for Baseline GANs drops
when the number of training set increase. We think this is due
to the big decrease of the number of duplicated levels (from
98% to 39.4%) as having higher percentage duplicated levels
increase the chance of having higher percentage of duplicated
playable levels.

Figure 3 shows eight levels generated by random sampling
the trained CESAGAN with bootstrapping. The top row shows
four different playable levels ' which not only satisfy all the
constraints but also have small amounts of enemies similar
to the human designed levels even though the constraint only
restricted enemy cover to less than 60% of the empty tiles. The
bottom row displays four unplayable levels that do not follow
different constraints but the most notable broken constraints
are the numerical constraints (number of avatar, doors, keys,
and enemies).

For further analysis of the generated content, we calculate
the average hamming distance by Norouzi et al. [35] between
the playable levels for the different techniques and compare
against the 45 human designed levels. Each level is compared
to all the other levels in the same set and the average hamming
distance is calculated (number of different tiles). Figure 5
shows the average hamming distance between levels from the
same set. Human designed levels have the highest distance
(33.31 and stdev 3.87), followed by CESAGAN levels (24.34
and stdev 3.7), then GAN generated levels (19.12 and stdev
2.3). CESAGAN produces a more diverse set of levels that are
as different from each other as possible compared to traditional
GAN:S.

Distributions of number of different tiles in the playable
levels generated CESAGAN and GAN are also calcualted and
compared to the distributions in the human levels. Figure 5

Uhttps://drive.google.com/file/d/1LmzyaEi4Kj4AKsIIBKrEOTvsm-3DuwJl/
view?usp=sharing

shows the different distributions of empty, wall, and enemy
tiles in order. Avatar, Key, or Door tile distributions are
not shown because they are always equal to 1 in playable
levels based on the defined constrained. CESAGAN levels
have nearly double the standard deviation than GAN levels
, meaning the CESAGAN model has the ability to generate
more diverse levels than the normal GAN. Having a higher
standard deviation is a double edged weapon, however. On
one hand, it enables new innovative levels that never been
seen. On the other, it deviates from the input style from the
dataset.

VI. CONCLUSION

We introduce a new GAN architecture — Conditional Em-
bedding Self-Attention Generative Adversarial Network (CE-
SAGAN) with bootstrapping mechanism — for video game
level generation. The results of the experiments confirm the
original concern that the state-of-art in GAN has limitations
when applied to procedural content generation (PCG). In
particular, GANs have difficulty in generating playable and
unique levels when few training samples are available. To
address this challenge, we introduce Conditional Embedding
Self-Attention Generative Adversarial Network (CESAGAN)
with bootstrapping. This new architecture is a modification
of SAGAN, with an additional feature conditional vector
to train the discriminator and generator. The results show
a considerable improvement in playability and diversity for
15,000 generated levels with respect to the state-of-art.

One of the next challenges for CESAGAN with boot-
strapping is to train on more complex video games such as
Boulderdash or train with more complex architectures in place
of the conditional feature. In addition, using a deep neural
network to select the most relevant levels for bootstrapping
could decrease the number of duplicate levels even further.

ACKNOWLEDGMENTS

Ruben Rodriguez Torrado/Michael Cerny Green acknowl-
edge the support of OriGen.Al to publish this work. Ahmed
Khalifa acknowledges the financial support from NSF grant
(Award number 1717324 - “RI: Small: General Intelligence
through Algorithm Invention and Selection.”). Michael Cerny
Green acknowledges the financial support of the SOE Fellow-
ship from NYU Tandon School of Engineering. All authors
acknowledge Per Josefsen and Nicola Zaltron, who were
responsible for the 45 human-designed levels.

REFERENCES

[1] A.Summerville, S. Snodgrass, M. Guzdial, C. Holmgard,
A. K. Hoover, A. Isaksen, A. Nealen, and J. Togelius,
“Procedural content generation via machine learning
(pcgml),” Transactions on Games, vol. 10, no. 3, 2018.

[2] A. Summerville and M. Mateas, “Super mario as a string:
Platformer level generation via Istms,” in FDG, 2016.

[3] S. Lee, A. Isaksen, C. Holmgard, and J. Togelius, ‘“Pre-
dicting resource locations in game maps using deep con-
volutional neural networks,” in Twelfth Artificial Intelli-

gence and Interactive Digital Entertainment Conference,

2016.

A. J. Summerville and M. Mateas, “Mystical tutor:

A magic: The gathering design assistant via denoising

sequence-to-sequence learning,” in AIIDE, 2016.

S. Dahlskog, J. Togelius, and M. J. Nelson, “Linear levels

through n-grams,” in International Academic MindTrek

Conference. ACM, 2014.

S. Snodgrass and S. Ontanén, “Controllable procedu-

ral content generation via constrained multi-dimensional

markov chain sampling.” in IJCAI, 2016.

V. Volz, J. Schrum, J. Liu, S. M. Lucas, A. Smith,

and S. Risi, “Evolving mario levels in the latent space

of a deep convolutional generative adversarial network,”
in Genetic and Evolutionary Computation Conference.

ACM, 2018.

T. Karras, T. Aila, S. Laine, and J. Lehtinen, ‘“Progressive

growing of gans for improved quality, stability, and

variation,” arXiv preprint arXiv:1710.10196, 2017.

D. Eck and J. Schmidhuber, “Finding temporal struc-

ture in music: Blues improvisation with Istm recurrent

networks,” in Workshop on neural networks for signal

processing. 1EEE, 2002.

A. Radford, J. Wu, D. Amodei, D. Amodei, J. Clark,

M. Brundage, and I. Sutskever, “Better language models

and their implications,” 2018.

J. Togelius, G. N. Yannakakis, K. O. Stanley, and

C. Browne, “Search-based procedural content generation:

A taxonomy and survey,” Transactions on Computational

Intelligence and Al in Games, vol. 3, no. 3, 2011.

P. Bontrager, A. Roy, J. Togelius, N. Memon, and

A. Ross, “Deepmasterprints: Generating masterprints for

dictionary attacks via latent variable evolution,” in Inter-

national Conference on Biometrics Theory, Applications

and Systems. 1EEE, 2019.

[13] L. Karth, “Elite (1984),” https://
procedural-generation.tumblr.com/post/112509130817/
elite- 1984-elite-created-by-ian-bell-and-david, 2015.

[14] N. Shaker, J. Togelius, and M. J. Nelson, Procedural
content generation in games. Springer, 2016.

[15] I. D. V. Inc, “Speedtree,” https://store.speedtree.com/,
2000.

[16] J. Taylor and I. Parberry, “Procedural generation of
sokoban levels,” in International Conference on Intelli-
gent Games and Simulation, 2011.

[17] L. Ferreira and C. Toledo, “A search-based approach
for generating angry birds levels,” in Computational
Intelligence and Games. 1EEE, 2014.

[18] A. Khalifa and M. Fayek, “Automatic puzzle level gener-
ation: A general approach using a description language,”
in Computational Creativity and Games Workshop, 2015.

[19] 1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
“Generative adversarial nets,” in Advances in neural
information processing systems, 2014,

[20] M. Mirza and S. Osindero, “Conditional generative ad-

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[22]

versarial nets,” arXiv preprint arXiv:1411.1784, 2014.
M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling,
“The arcade learning environment: An evaluation plat-
form for general agents,” Journal of Artificial Intelligence
Research, vol. 47, jun 2013.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and 1. Polosukhin,
“Attention is all you need,” in Advances in neural infor-
mation processing systems, 2017.

H. Zhang, 1. Goodfellow, D. Metaxas, and A. Odena,
“Self-attention generative adversarial networks,” arXiv
preprint arXiv:1805.08318, 2018.

E. Giacomello, P. L. Lanzi, and D. Loiacono, “Doom
level generation using generative adversarial networks,”
in Games, Entertainment, Media Conference. IEEE,
2018.

P. Bontrager, J. Togelius, and N. Memon, ‘“Deepmaster-
print: Generating fingerprints for presentation attacks,”
arXiv preprint arXiv:1705.07386, 2017.

Z. Hu, Z. Yang, R. R. Salakhutdinov, L. Qin, X. Liang,
H. Dong, and E. P. Xing, “Deep generative models with
learnable knowledge constraints,” in Advances in Neural
Information Processing Systems, 2018.

D. Perez, J. Liu, A. Abdel Samea Khalifa, R. D. Gaina,
J. Togelius, and S. M. Lucas, “General video game ai: a
multi-track framework for evaluating agents, games and
content generation algorithms,” Transactions on Games,
2019.

M. Ebner, J. Levine, S. M. Lucas, T. Schaul, T. Thomp-
son, and J. Togelius, “Towards a video game description
language,” Dagstuhl Reports, 2013.

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung,
A. Radford, and X. Chen, “Improved techniques for train-
ing gans,” in Advances in neural information processing
systems, 2016.

N. Kodali, J. Abernethy, J. Hays, and Z. Kira, “On
convergence and stability of gans,” arXiv preprint
arXiv:1705.07215, 2017.

J. Cheng, L. Dong, and M. Lapata, “Long short-term
memory-networks for machine reading,” arXiv preprint
arXiv:1601.06733, 2016.

C. Guo and F. Berkhahn, “Entity embeddings of categor-
ical variables,” arXiv preprint arXiv:1604.06737, 2016.
D. M. Valladao, R. R. Torrado, B. Flach, S. Embid et al.,
“On the stochastic response surface methodology for the
determination of the development plan of an oil & gas
field,” in SPE Middle East Intelligent Energy Conference
and Exhibition. Society of Petroleum Engineers, 2013.
R. D. Gaina, A. Couetoux, D. J. N. J. Soemers, M. H. M.
Winands, T. Vodopivec, F. Kirchgefner, J. Liu, S. M.
Lucas, and D. Perez-Liebana, “The 2016 two-player
GVGAI competition,” Transactions on Computational
Intelligence and Al in Games, 2017.

M. Norouzi, D. J. Fleet, and R. R. Salakhutdinov, “Ham-
ming distance metric learning,” in Advances in neural
information processing systems, 2012.

