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Abstract—While deep neural networks (DNNs) and Gaussian
Processes (GPs) are both popularly utilized to solve problems
in reinforcement learning, both approaches feature undesirable
drawbacks for challenging problems. DNNs learn complex non-
linear embeddings, but do not naturally quantify uncertainty
and are often data-inefficient to train. GPs infer posterior
distributions over functions, but popular kernels exhibit limited
expressivity on complex and high-dimensional data. Fortunately,
recently discovered conjugate and neural tangent kernel functions
encode the behavior of overparameterized neural networks in
the kernel domain. We demonstrate that these kernels can
be efficiently applied to regression and reinforcement learning
problems by analyzing a baseline case study.

We apply GPs with neural network dual kernels to solve
reinforcement learning tasks for the first time. We demonstrate,
using the well understood mountain-car problem, that GPs
empowered with dual kernels perform at least as well as those
using the conventional radial basis function kernel. We conjecture
that by inheriting the probabilistic rigor of GPs and the powerful
embedding properties of DNNs, GPs using NN dual kernels
will empower future reinforcement learning models on difficult
domains.

Index Terms—Reinforcement Learning; Gaussian Processes;
Deep Neural Networks

I. INTRODUCTION

The traditional approach in optimal control posits a con-
troller with a suite of control signals able to affect a known
dynamical system. The problem is to devise a policy for
scheduling control signals in order to achieve some given
objective. As there is no uncertainty in the model, finding
such a policy becomes an optimization problem.

However, many applications involve decision-making chal-
lenges where data are limited and the generative models are
complex and partially or completely unknown. As such, the
reinforcement learning (RL) branch of machine learning arose
to develop models for an agent or agents acting on an initially
unknown environment. RL algorithms learn a policy to guide
agent actions in order to achieve some high-level goal by
acting on its environment and using the response to model
its dynamics.

Although RL and optimal control are related, these research
fields are traditionally separate. Ultimately, both are concerned
with sequential decision making to minimize an expected

long-term cost. The dynamical system, controller, and control
signals of optimal control roughly map onto the environment,
agent(s), and actions of RL.

Many RL algorithms [4, 22, 35, 36, 40] address a lack of
dynamics knowledge by way of a reliance upon parametric
adaptive elements or control policies whose number of param-
eters or features are fixed and predetermined. These parameters
are usually then learned from data. Deep neural networks
(DNNs) are also used extensively in RL [26, 27, 41].

Deep reinforcement learning (Deep RL) has become in-
creasingly popular since the demonstration of its super-human
performance in playing Atari games [27]. Following this, RL
has been successfully applied in many contexts, e.g., games
[14], physically-based animations [23, 34], and robotics [11].

DNNs are attractive as they are known to have an ex-
cellent representative power [12, 15, 17]. However, tuning
and training the parameters is a data-inefficient practice [30].
Moreover, DNNs usually include no natural means of quan-
tifying the uncertainty in their predictions [9]. Thus trained
models may overconfidently predict the unknown dynamics
when the system operates outside of the observed domain.
Such overconfident prediction can lead to system instability,
thereby making any controller stability results unachievable.

Nonparametric kernel methods such as Gaussian processes
(GPs) [37] have also been applied to reinforcement learning
tasks [7, 8, 16, 18, 19, 29, 32]. GPs are popular in many areas
of machine learning due to their flexibility, interpretability, and
natural uncertainty quantification due to being Bayesian mod-
els. However GP-related data-driven methods remain largely
unexploited in optimal control.

The choice of GP kernel function encodes our prior beliefs
about the distribution of the function of interest and is a
key part of modeling. For example, Kuss and Rasmussen
use the famous radial basis function (RBF) in a GP to
solve the mountain-car problem, implying that the dynamics
are believed to be very smooth [18]. However, GPs often
struggle to learn the features of complex or high-dimensional
data, worrying the researcher interested in extrapolating this
approach to such domains.

Recent results have shown a duality between wide, random
DNNs and GPs through the use of the conjugate kernels
(CK)[5, 6, 20, 25, 31] and neural tangent kernels (NTK)
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[1, 2, 13, 39]. These kernels capture, in a sense that will be
made explicit in Section II, the nonlinear feature embedding
learned by the corresponding DNN architecture. However,
these kernels are at present mostly treated as an academic
curiosity and have predominantly been applied to image clas-
sification problems [1].

Our Contributions. We recreate the mountain-car ex-
periment of [18] using GPs with the NN dual kernels. Our
results compare favorably with GPs using the RBF kernel. We
also describe our optimized algorithm for this reinforcement
learning.

II. GAUSSIAN PROCESSES, NEURAL NETWORKS, AND
DUAL KERNELS

We will briefly review GPs, DNNs, and the correspondence
between GPs and infinitely wide Bayesian DNNs. We will
focus on the computation of the various models, and largely
omit training details.

GPs are flexible, nonparametric Bayesian models that spec-
ify a prior distribution over a function f : X → Y that can be
updated by data D ⊂ X ×Y . Coarsely, a GP is a collection of
random variables, any finite subset of which has a multivariate
Gaussian distribution. We say that f ∼ GP(m(·), k(·, ·)),
where m : X → R is a mean function and k : X × X → R a
positive definite covariance function with hyperparameters θ.
In practice m is often assumed to be the zero function. For
any finite X ⊂ X ,

f = [f(x1), . . . , f(xn)]> ∼ N (0,Kff ) (1)

is the prior over f at the locations x . Here Kff is an n×n ma-
trix whose (i, j)th element is k(xi,xj) = cov(f(xi), f(xj)).
Such covariance matrices implicitly depend on θ. If we ob-
serve y = f + ε, where εi ∼ N (0, σ2

ε ) is homoscedastic noise,
then the predictive distribution evaluated at finite locations
X∗ ⊂ X is given by

f∗ | X,X∗,y ∼ N
(
K∗f

(
Kff + σ2I

)−1
y,

K∗∗ −K∗f
(
Kff + σ2I

)−1
Kf∗

)
.

(2)

Here K∗f = Kf∗
> is the cross-covariance matrix between X∗

and X.
The expressiveness of a GP is heavily dependent upon the

choice of kernel function k. Most common functions, for
example the RBF kernel,

kRBF(x,x′) = exp
(
−‖x− x′‖22

`2

)
, (3)

exhibit limited expressiveness on complex data and impose
sometimes-inappropriate assumptions such as stationarity. GPs
also suffer from cubic scaling in the observation size, although
a rich literature of approximations addresses this problem.
In exchange, GPs allow fully-Bayesian inference, and exhibit
robust uncertainty quantification by way of providing full
posterior distributions.

DNNs learn an embedding of inputs into a latent space
by way of iteratively applying nonlinear transforms. This

embedding transforms highly-nonlinear data relationships into
a linear feature space, allowing a final linear regression to
produce predictions. In contrast to GPs, DNNs are highly
parametric, often utilizing more parameters than observations.
For this reason, DNNs often require large amounts of training
data, and a vast literature has developed around heuristic
training protocols. While DNNs do not, in general, produce
posterior distributions, their popularity is due to good empir-
ical performance on complex and high-dimensional data. A
DNN with L layers and widths {n`}L`=0 has parameters con-
sisting of weight matrices {W ` ∈ Rn`×n`−1}L`=1 and biases
{b` ∈ R`}L`=1. We will assume the NTK parameterization and
introduce hyperparameters σw and σb, whose interpretation we
will define in Section II-A. The output of a DNN on input x
is hL(x), which is computed recursively as

h1(x) =
σw√
n0
W 1x + σbb

1,

h`(x) =
σw√
n`−1

W `φ
(
h`−1(x)

)
+ σbb

`.
(4)

Here φ(·) is an element-wise scalar nonlinear activation func-
tion, such as the popular ReLU function:

φReLU(x) = max{0, x}. (5)

A. Dual Kernels

As we have noted, GPs and DNNs have different advantages
and disadvantages. Many attempts have been made to obtain
“the best of both worlds” - the uncertainty quantification
and interpretability of GPs along with the computational
convenience and expressivity of DNNs. Such efforts include
Bayesian neural networks, which apply prior distributions to
the weights of neural networks [31], and applying GPs to
feature vectors embedded by DNNs [24]. Interestingly, a direct
correspondence between GPs and Bayesian DNNs of any
depth arises as the hidden layers become sufficiently wide.
We will briefly motivate this correspondence, its history and
applications.

Initializing all of the parameters in a DNN as W `
i,j ∼

N
(

0,
σ2
w

n`−1

)
and b`i ∼ N

(
0, σ2

b

)
for i ∈

[
n`
]

and j ∈
[
n`−1

]
(i.e. Glorot initialization [20]) is common in practice. Note that
this is the equivalent of initializing all of the parameters in Eq.
(4) as i.i.d. N (0, 1). In the study of highly overparameterized
(wide) models over the last several decades, investigators made
two unexpected observations.

1) Random initialization followed by training only the final
linear layer often produces high-quality predictions.

2) Training overparameterized models tends to produce
weights that differ only slightly from initialization.

The correspondence between infinitely wide single hidden
layer neural networks with i.i.d. Gaussian weights and biases
was first discovered as far back as the 1990s by Neal by
application of the Central Limit Theorem [31]. Recently,
others have extended Neal’s result to infinitely wide deep
neural networks [20, 25] and convolutional neural networks
with infinitely many channels [10, 33]. Arora et al. improved



these results by showing that the correspondence holds for
finite neural networks that are sufficiently wide [1] and showed
empirical evidence that the kernel process behavior occurs at
lower widths than theoretically guaranteed [2]. The kernel cor-
responding to wide DNNs is referred to in the literature as the
conjugate kernel (CK) [6] or NNGP kernel [20]. Transforming
a nonlinear transform of a DNN to kernel form requires
obtaining a dual form of the nonlinearity φ given positive
definite kernel matrix K representing the kernel defined by
the lower layers [5, 6]. For nonlinearity φ and kernel matrix
K the dual form is known to be

Vφ(K)(x,x′) = E
f∼N (0,K)

φ(f(x))φ(f(x′)). (6)

Using this dual transform and the notation of Eq. (4) and
following the formulation of [39], we can express the CK
recursively as

Σ1(x,x′) =
σ2
w

n0
〈x,x′〉+ σ2

b

Σ`(x,x′) = σ2
wVφ(Σ`−1)(x,x′) + σ2

b .

(7)

The last layer kernel ΣL is the conjugate kernel for the
network. This kernel corresponds exactly to that of the linear
model resulting from randomly initializing all weights and
training the last layer.

If the CK lends mathematical rigor to observation 1) above,
the neural tangent kernel (NTK) does the same with observa-
tion 2). Intuitively, the NTK corresponds to a generalization
of the CK where we train the whole model, rather than only
the last layer. The NTK emerges from the observation that
infinitely wide neural networks evolve as linear models under
stochastic gradient descent [13, 21] and has also been shown
to generalize to convolutional and finite architectures [1].
Evidence suggests that the NTK might be capable of learning
more complex features than the CK [39], and the NTK has
recently been shown to deliver competitive predictions in an
SVM on small data learning benchmarks [2]. We will omit
the derivation, which is somewhat involved, and instead recite
the form of the NTK ΘL as given in [39]:

Θ1(x,x′) = Σ1(x,x′)

Θ`(x,x′) = Σ`(x,x′) + σ2
wΘ`−1(x,x′)Vφ′(Σ

`−1)(x,x′).
(8)

At first blush, the formulations of Eqs. (7) and (8) are
unhelpful, as computing Eq. (6) is intractable. Fortunately,
closed-form solutions are known for several common activa-
tion functions [5, 6], enabling efficient computation. Through-
out the rest of this document we will consider only networks
utilizing φReLU, which is known to have analytic dual activa-
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Fig. 1. Predictive distributions of the RBF, CK and NTK trained on
observations derived from the dynamics ζ(·).

tions:

VφReLU(K)(x,x′) =

√
K(x,x)K(x′,x′)

2π (sin c+ (π − c) cos c))

(9)

Vφ′ReLU
(K)(x,x′) =

1

2π
(π − c) (10)

c = arccos

(
K(x,x′)√

K(x,x)K(x′,x′)

)
. (11)

B. A motivating example

We will illustrate the usage of the RBF kernel along with
CK and NTK on a model of a simple machine. Consider the
central example given in [3] of moving a weight up a slope.
We will assume that we are trying to learn a true process
driven by the dynamics

ζ(x | θ, a) =
θx

1− x/a
. (12)

Here x is a control parameter modeling the amount of force
exerted on the system, while θ and a are unknown. In terms of
the model, the numerator of Eq. (12) corresponds to the ideal
efficiency of the machine, while the denominator corresponds
to inefficiency (such as loss due to friction).

Say that we wish to model Eq. (12) using a GP, and that we
have observed a vector of responses y at 11 locations x evenly-
spaced in [0.1, 4]. Then we believe that for each i ∈ [11],

yi = f(xi) + εi (13)

where f ∼ GP(0, k(·, ·)) for some kernel function k and εi ∼
N (0, σ2) is measurement noise.

We simulate the dynamics

yi = ζ(xi | 0.65, 10) + εi (14)

for εi ∼ N (0, 0.12) and fit GP models for each of kRBF,
kCK, and kNTK as defined above. We use Eq. (2) to learn the
posterior distributions of each GP over a set x∗ uniformly
spaced in [0.2, 9] and fit the hyperparameters of each kernel
by way of a simple grid search using the loglikelihood. See
[37] Chapter 2 for a comprehensive review of GP regression.

Figure 1 plots the means of the resulting distributions and
their 95% confidence intervals, along with the true dynamics in
blue and the observations in red. Note that the RBF GP returns
to the prior mean 0 when extrapolating far from the observed
data. This is expected of stationary kernels, as inputs that are



far apart are assumed to have low correlation. As given in
Eqs. (7) and (8), both the CK and NTK kernels are functions
of 〈x,x′〉, ‖x‖, and ‖x′‖. Thus, they are nonstationary on
Rn0

. It is worth noting that most extant GP applications of
CK and NTK use image data that has been normalized to the
unit hypersphere [1, 13, 20, 25]. In this case, CK and NTK
are functions of the angle between the unit vectors x and x′,
which maps one-to-one with ‖x − x′‖. Consequently, in the
aforementioned applications CK and NTK are isotropic. We
do not perform normalization nor do we embed our data in a
higher dimensional hypersphere in this work, meaning that in
all cases the CK and NTK kernels are nonstationary.

The fact that the posterior means of CK and NTK trend
closer to the true dynamics far from the training data does
not imply that these kernels are somehow “better” than RBF,
but rather that their implicit assumptions about how the data
is organized happen to center relatively well on this example.
More careful accounting of model discrepancy, such as that
demonstrated in [3], can produce much better extrapolation.
Note that in all cases, however, the confidence interval grows
dramatically as we move further from the observed data. This
behavior indicates a low confidence in any projections in these
data, which provides a good example of what is desired from
uncertainty quantification. The majority of practical problems
involve high dimensional transformations that are much harder
to visualize. Thankfully, the posterior distributions still allow
the investigator to detect where predictions are uncertain due
to the presence of high variance. The rest of this document
concerns itself with such an application to reinforcement
learning.

III. THE MOUNTAIN-CAR REINFORCEMENT LEARNING
PROBLEM

A. Description

The reinforcement learning problem studied in this paper
is the mountain-car problem: a car drives along a mountain
track and the objective is to drive to the top of the mountain.
However gravity is stronger than the engine, and even at full
thrust the car cannot accelerate up the steep slope. The only
way to solve the problem is to first accelerate backwards, away
from the goal, and then apply full thrust forwards, building up
enough speed to carry over the steep slope even while slowing
down the whole way. Thus, one must initially move away from
the goal in order to reach it in the long run. This is a simple
example of a task whose optimal solution is unintuitive: things
must get worse before they can get better. The problem is fully
described in [28, 35] and is illustrated in Figure 2.

The mountain-car dynamical system has two continuous
state variables, the position of the car x, and the velocity of the
car ẋ. The state s can be written as s = (x, ẋ). The mountain
surface is described by the altitude

H(x) =

{
x2 + x if x < 0,

x√
1+5x2

if x ≥ 0.
(15)

-1 1-0.5
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Fig. 2. Illustration of the mountain car problem. The car is initially resting
motionless at x = −0.5 and the goal is to bring it up and hold it in the
region around the flag.

The input that the driver can apply is the horizontal force
F . Boundary conditions are imposed for each of the position,
velocity and force of the car respectively as follows:

−1 ≤ x ≤ 1

−2 ≤ ẋ ≤ 2

−4 ≤ F ≤ 4.

(16)

The initial state s0 = [−0.5, 0]T indicates the car is at the
unmoving at minimum altitude. This is the also the equilibrium
of the dynamics. The target reward R is a multivariate gaussian
PDF with mean (x = 0.6, ẋ = 0) and covariance σ2I2 with
σ = 0.05. R is plotted in the top of Fig. 4.

This choice of instantaneous reward function encodes into
the model a desire to be as close as possible to the flag at
position x = 6.0 while remaining as stationary as possible.
The agent’s goal is to find the optimal trajectory for the
car to maneuver towards and remain near the flag, given the
dynamics of the environment. The core RL problem here is
to find a policy for the decision maker (driver/car): a function
π that specifies the action F = π(s) that the decision maker
will choose when in state s.

The standard family of algorithms to calculate this optimal
policy constructs two arrays indexed by state: policy π and
value V . Upon completion of the algorithm, π(s) specifies
the action to be taken in state s, while V (s) is the real-valued
discounted sum of the rewards to be earned by following that
solution from s.

This RL algorithm has two steps, (1) a value update and (2)
a policy update, which are iterated across all the states until
π and V converge. The Bellman equation is commonly used
to update the value V :

V (s) =

∫
Pπ(s)(s, s

′)
[
Rπ(s)(s, s

′) + γV (s′)
]
ds′. (17)

Here γ is the discount factor and satisfies 0 ≤ γ ≤ 1, Pπ(s)
is the transition probability of going from state s to state s′

when applying action π(s) and Rπ(s) is the corresponding im-
mediate expected reward. Given a computed value function V



for a given policy π, we can compute an implicitly optimized
update policy π′ as:

π(s) = argmaxa

{∫
s′
P (s′ | s, a) [R(s′ | s, a) + γV (s′)] ds′

}
(18)

Section III-B explains the algorithm in detail. The main idea is
that we iterate the process of evaluating V for a given policy
π over the continuous state space using Eq. (17) and then
recompute the policy using Eq. (18).

B. Algorithmic Implementation

Our algorithm is a generalization of the algorithm described
in [18] which is able to accommodate the three different
kernels described in the previous section while maintaining
computational efficiency. It proceeds by first initializing the
dynamics of the model and value function, then iterating over
updating the value and policy until convergence. We model
the dynamics using GPs. In doing so, we explicitly solve the
dynamics for a small number of observed position/velocity
states, then train GPs to interpolate the state evolution of
unobserved states. Similarly, we use a separate GP to model
the value function at a small number of position/velocity states,
each with a small number uniform sample forces. We iterate
over this GP, applying interpolation to update the learned
policy which we in turn use to update the GP.

a) Initialization of the dynamics: The first step is
to train a GP to predict the dynamics of the system. The
dynamical equation is

d

dt

xẋ
F

 =

 ẋ
F −G · sin(arctan(H ′(x)))

0

 . (19)

Here G is the gravitational constant and H ′ is the derivative of
the altitude given in Eq. (15) with respect to x. Given a state
s, we integrate Eq. (19) forward in time over a span ∆t of
0.3 s to obtain the corresponding next state s′. For training we
take Nd = 128 random 3D states si chosen uniformly in the
domain defined by (16) and we compute their corresponding
next states s′i. We use these s - s′ pairs as observations to
train two GPs, one for x and one for ẋ. We can then utilize
Eq. (2) to interpolate the dynamics evolution at unobserved
states. We assume the hyperparameters of both CK and NTK
to be distributed according to an inverse-Gamma distribution.
We use a Monte Carlo Markov Chain technique to fit them
by minimizing the mean square error when predicting the dy-
namics. See [37] for a nuanced discussion of hyperparameter
optimization. Both kernels provide comparable accuracy for
predicting the dynamics once trained and tuned.

b) Initialization of the value function: Next we must
train a GP to predict the value function of any given state.
The procedure is iterative so we use the reward R as the
initial value function. As with the dynamics, we take a certain
number (NV = 512) of random states in the 3D domain of
(sj , F ) uniformly from the domain (16) and associate them
with their corresponding initial value (≡ R) to provide training
samples. Note that contrary to [37], we train that GP using

the full 3D state (x, ẋ, F ) as input rather than omitting F for
reasons that will be apparent in the description of the iterations
below. We tune the hyperparameters of the value GPs using
the same MCMC procedure applied to the dynamics.

c) Iteration of the value and policy: Once all the GPs
are trained and tuned, we can start iterating to update the
value GP and the policy until the value function converges to
a fixed point. For each state sj in the dynamics training set,
we generate a sequence of NF = 128 states sk = (xk, ẋk, Fk)
where ∀k, xk = xj , ẋk = ẋj , and the actions Fk are uniformly
spaced and cover the entire F domain. Then we use the
dynamics GPs to predict their respective next states s′k as the
posterior means of Eq. (2). s′k then serves as input to the value
GP to predict Vk, again as the posterior mean of Eq. (2). We
can then compute V max

j = maxk Vk and kmax = arg maxk Vk
and deduce the policy π(sj) = Fkmax . Finally we can update
the value associated with each sj using Vj ← R(sj)+γ ·V max

j .
Once the value has been updated, we retrain the value GP.

We repeat this procedure until the value stops evolving. Once
it does we output the optimal policy π.

C. Results

We show that GPs using either both the CK and NTK as
their kernel functions are suitable for solving the mountain
car reinforcement learning problem. The estimated dynamics
are predicted with sufficient accuracy to enable the iterative
evolution of the value function.
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Fig. 3. True (black) and predicted (red) dynamics as a function of x and ẋ (for
F = 0). Each arrow represents a state s (base of the arrow) and points in the
direction of its next state s′ 0.3 s in the future. The arrow lengths are scaled
down so as not to overlap. The stable equilibrium at (−0.5, 0) corresponds to
the bottom of the valley. The target at (0.6, 0) is unstable requiring a sustained
force F > 0 to maintain the car at the target. The discontinuity in the upper
right of the phase plot is due to boundary conditions: hitting the boundary of
the domain brings the velocity to zero.

Figure 3 shows the comparison between the dynamics
derived from the physics (the truth) and the dynamics predicted
using CK Gaussian process modeling. We can see that our



dynamical model is very close to the reality. It captures the
main features and equilibria of the dynamical system.
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Fig. 4. Initial reward (top) and final value function for CK (middle) and NTK
(bottom) as a function of x and ẋ for F = 0.

Figure 4 shows the initial value (top) which is the instant
reward, a Gaussian function centered around the target at

(x, ẋ) = (0.6, 0) with a small standard deviation of 0.05, and
the final value function for CK (middle) and NTK (bottom).
For both kernels, the value function converges in six iterations.
The value expands diagonally from the target to regions where
the velocity is high enough to overcome the steep slope and
finally curves back to reach the car’s initial position from the
left, leading to the non-trivial but correct policy that the car
should start by going backward before speeding up the slope.
The value function does not increase from zero in the central
region of the phase space, which corresponds to the invalid
policy of attempting to climb the slope of the mountain in the
positive x-direction without sufficient momentum.
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Fig. 5. Evolution of the x position over time. The car goes backward initially
then speeds up the hill.

Figure 5 illustrates the learned optimal trajectories of the car
along the x-axis over time. Again for both kernels, the car first
moves backward then speeds up to quickly reach the target,
where it stays indefinitely. The oscillations of the car around
the target location (x = 0.6) are the result of compounding
errors in the GP predictions of the dynamics and the value.
These oscillations can most likely be reduced by adding more
training points, both for the dynamics and the value, but this
comes at the cost of additional computation.

In our training of the GP representation of the value
function, we see there are clear regions of interest in the
value function that change with each training iteration. This
indicates that choosing training points uniformly in the entire
domain and keeping the same points throughout iterations
is suboptimal. It would be better to sample more points
where the value is higher so as to achieve better resolution
in this region. In other words, we expect to see improved
numerical performance by converting the value function into
a probability density function for sampling training points
followed by resampling the points after each policy iteration
step to accommodate the changing value function. This should
allow more accurate predictions without the performance cost
of adding more training points.



IV. PERSPECTIVES AND CONCLUSION

We have shown that GP kernels that are dual descriptions of
neural networks are suitable for solving a simple reinforcement
learning problem. The kernels we use here have been shown
to perform well for GP classification tasks [e.g., 20], but we
believe our result is the first application of such kernels for GP
regression in a non-trivial problem. We have also improved the
GP model for the value function from those models presented
in the literature [i.e., 18] to increase the computational effi-
ciency of the policy iteration step by decreasing the number of
sample points in the combination of phase space and possible
actions. We are able to achieve this performance improvement
because of the improved expressivity of the GP regression in
the combined sample space.

While this simple mountain-car RL problem turns out to be
easily soluble with GPs utilizing the classic RBF kernel, we
have shown that neural network dual kernels deliver similar
performance. Furthermore, we expect that more challenging
RL problems that have benefitted from neural networks for
modeling the dynamics and the value function may also
benefit in the future from the GP dual description of those
networks [e.g., 27]. In particular, RL problems relying on
computer vision may benefit from application of the con-
volution version of the CK or NTK [1]. Additionally, the
ongoing development of kernels dual to arbitrary architectures
opens up the possibility of taking advantage of recurrent
neural network expressivity within the GP paradigm [38].
The GP dual to neural networks applied to RL thus offers
promise of incorporating recent advances in deep RL with the
probabilistic modeling features of GPs. Such applications also
elude the grasp of more conventional GP models in the current
literature due to the expressivity limitations of known kernels,
especially on high-dimensional data.

We also have not fully exploited the value in utilizing dual
GPs. All of the predictions given throughout this document
utilize only the posterior mean of Eq. (2) for prediction. In
this sense, we might as well have actually used overparame-
terized DNNs for prediction. We expect that knowledge of the
posterior variance will be greatly beneficial in more advanced
RL problems where dynamics and value function propagation
involves more uncertainty. We will incorporate applications of
uncertainty quantification into future work.
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