
Automatic Playtesting for Yahtzee
James Glenn

Dept. of Computer Science
Yale University

New Haven, CT, USA
james.glenn@yale.edu

Rob Brunstad
Dept. of Computer Science

Yale University
New Haven, CT, USA

charles.brunstad@yale.edu

Abstract—Yahtzee is a dice game with elements of skill and
chance. There are many numeric parameters that govern the
game’s scoring rules, and varying those parameters will affect
many aspects of game play, including strategic depth. We take
advantage of the ease of computing the optimal policy for solitaire
Yahtzee to use supervised learning to develop near-optimal agents
based on neural networks. With the aim of automatically selecting
scoring parameters that increase strategic depth, we measure the
agent’s skill as we vary the resources available to the neural
networks and use metrics derived from the resulting learning
curve as an indicator of strategic depth.

Index Terms—games, neural networks, supervised learning

I. INTRODUCTION

Yahtzee is a multi-player dice game with elements of both
skill and chance. Players take turns rolling five six-sided dice
with the aim of rolling poker-like combinations (for example,
straights, three-of-a-kind, or full house). Players may reroll
any of the dice twice during their turn, and at the end of their
turn choose one of thirteen scoring categories. Each category
may be used once per player per game, and each has its own
scoring rules as follows.
• Ones...Sixes: (the upper categories) one point for each

pip on dice showing a number matching the category.
• Three/Four of a Kind: the sum of the dice if at least

three/four show the same number, 0 otherwise.
• Full House: 25 points if three dice show the same number

and two show a different number, 0 otherwise.
• Small/Large Straight: 30/40 points if four/five of the dice

show consecutive numbers, 0 otherwise.
• Chance: the sum of the dice.
• Yahtzee: 50 points for five of a kind, 0 otherwise.

In addition, there are two possible bonuses: 35 points if the
sum of categories ones through sixes (the upper categories)
is at least 35, and 100 points for each Yahtzee rolled after
scoring 50 in the Yahtzee category (the extra Yahtzees are
still scored in another unused category). Five-of-a-kinds that
can’t be used in Yahtzee can also be used as a yahtzee joker
for the full score in Full House or the Straights when the
corresponding upper category has also already been used (and
with the official forced joker rule, the upper category must be
used if available). The winner is the player with the highest
score after all players have taken their thirteen turns. The game
can also be played solitaire with objectives chosen by the

player, such as maximizing the average score or maximum
score over a sequence of games.

Varying any of the scores defined in the rules will yield a
new version of the game; each new version plays differently.
For example, lowering the value of the upper bonus from 35
will reduce the value of putting high scoring rolls in the upper
categories in favor of placing them in the lower categories.
Raising the value of the upper bonus will reward decisions
that lead to higher scores in the upper categories. Raising or
lowering the threshold at which the upper bonus is earned
will have similar effects, and changing the other scoring rules
affect decision making for the corresponding categories.

A game designer will endeavor to find variations on the
rules that result in games that are rewarding for humans to
play, where “rewarding” can mean many things, including
deep, clear, original, or aesthetically pleasing. Traditionally,
such optimization of game rules towards these characteristics
has been done through manual playtesting, in which designers
gather subjective feedback from playtesters.

We focus on strategic depth – the extent to which there are
many different levels of skill exhibited by players – and eval-
uate metrics that we hope capture information about strategic
depth by comparing the performance of agents for solitaire
Yahtzee that have access to differing levels of computational
resources to the performance of an optimal agent.

II. BACKGROUND

With advances in processing power and AI techniques have
come advances in automatic playtesting systems. Browne, for
example, devised a system to evaluate characteristics of game
play using a general game-playing system, correlated those
characteristics with subjective ratings of games, and used those
results to guide a system that automatically generates games,
resulting in the highly-rated game Yavalath [2].

Togelius et al. survey procedural content generation, includ-
ing simulation-based evaluation of generated content using
intelligent agents [11], with examples of quality measures
(fitness) of content including number of moves to solve [1]
[8], variation in progress by a neural network controller [10],
and neural networks’ predictions of emotional state [9]. More
recently, Liu et al. use performance of a general video game
playing agent against a simple agent as the objective function
when optimizing the parameters of a space-battle game [7].

978-1-7281-4533-4/20/$31.00 ©2020 IEEE

Fig. 1: Three hypothetical strategy ladders.

Lantz et al. propose a metric d of the number of steps
of improvement in an artificial agent’s quality of play as
the computational resources available to it increase [6]. The
number of steps is counted by generating a strategy ladder: a
graph of the performance of an agent against the computational
resources available, where computational resources could be
computing time, memory, or any other quantity for which
increasing the value could be expected to result in an increase
in performance. The number of steps is then determined by
the number of increments of resources available that result
in increases in performance above the previous threshold;
after each such step the threshold is reset to a fixed amount
above the current level of performance. That metric d could
be construed as an approximation of the strategic depth of
a game – the extent to which continuous careful study of a
game yields insights that generalize well and lead to constant
improvement in skill. Chess and go are regarded as games
with great strategic depth, so should have high d values. A
game with a randomly generated game tree should have a low
d value since playing well comes from memorization rather
than generalizable insights.

Volkovas et al. use the same idea of varying computational
resources and measuring the resulting performance [13]. They
choose the number of hidden neurons in a neural network as
their variable resources and measure how well the networks
can predict the next state in a puzzle. Rather than assigning a
measure of quality to the shape of the learning curve, their tool
allows the puzzle designer to specify a target learning curve
and the tool, having precomputed the curves for all versions
of the puzzle, then picks the puzzle with the best match.

Although solitaire Yahtzee is not as strategically deep as
chess or go, it may be interesting enough to serve as a
testbed for automatic playtesting techniques. Yahtzee is a
finite game with a finite state space, and so, in theory, an
optimal strategy could be computed by solving the Bellman
equations V (s) = maxa

∑
s′ (Pa(s, s′) · (Ra(s, s′) + V (s′)),

where Pa(s, s′) is the probability action a from state s leads to
state s′ and Ra(s, s′) is the reward earned by that transition.
For a finite game, the equations can be solved in one pass
by dynamic programming, ordering the states by distance to
the end of the game. But in practice, the state space for
even two-player Yahtzee is too large to explore exhaustively.
The solitaire game, however, has a small enough state space
so that the optimal strategy for certain objectives can be
computed easily on current systems. Verhoeff [12], Glenn [4]

[5], Woodward [14], and others computed the optimal policy
when the goal is to maximize the expected score as long as 20
years ago. Other objectives have also been considered, such
as maximizing the probability of exceeding a target score [3].

III. EXPERIMENTAL DESIGN AND RESULTS

We consider techniques that leverage the optimal policy in
order to evaluate the results of varying the numeric parameters
of the game on its strategic depth. In particular, we investigate
the effect on strategic depth of the parameters of the upper
bonus: both the upper total threshold required to earn it, and its
value. It is clear that these parameters affect players’ strategy:
when the first turn ends with the roll 56666 then the optimal
policy chooses to score the roll 56666 in Four of a Kind if there
is no upper bonus, and the difference between that and the next
best option (Sixes) is about 5.5 points. But in the official game
the decision swings the other way, with a difference between
those options (still the two best) of 3.7 points.

We leverage the ability to compute the optimal solitaire
strategy for versions of Yahtzee with different scoring rules
to train a set of architecturally similar neural networks. The
training examples used in the supervised learning are sampled
from games played by the optimal solitaire player. The neural
network has 2 hidden layers with default sizes of 100 and
200 nodes. The current state is encoded as the input, and
includes the state of the scoresheet, the current roll, and
the number of rolls left in the turn. The scoresheet part of
the state generally only includes whether a category is used
or not, and not the score earned in the category, since the
score earned in the past does not affect future strategy. The
exceptions are the upper categories, where the upper bonus
requires the total to be recorded in the state (so 2 points in
twos and 6 in threes is equivalent to 8 in twos and 0 in threes),
and Yahtzee, where the Yahtzee bonus requires a distinction
between unused, zero, and 50. There are then 22 inputs to
the neural network: twelve binary inputs to indicate whether
the categories other than Yahtzee are used or unused; two
binary inputs for the Yahtzee category (00 meaning unused,
10 meaning zero, and 01 meaning 50); six to count how many
of each possible number are in the current roll, normalized
to the range [0, 1]; one for the current upper total, clipped
and normalized to [0, 1] by min(total,threshold)

threshold ; and one for
the number of rolls left, normalized to [0, 1]. The network has
categorical outputs that correspond to meta-actions. A meta-
action is a function that takes a game state and outputs a game
action, which will be a subset of the dice to keep for states
with rolls left, and unused categories for states at the end of
a turn. We use meta-actions to reduce the number of outputs:
instead of outputs for the up to 32 different choices of dice
to keep and 13 choices of category to score in, we have only
ten meta-actions. The meta-actions are hand-coded functions
that attempt to capture the intent of players – what category
they are trying to achieve a good score in. For example, if the
current roll is 12235 and the player keeps 123 then they are
probably trying to complete a straight. The complete list of
meta-actions follows.

• Ones,...,Sixes: one meta-action for each upper category
that, when there are rolls left, chooses to keep only the
dice that match the category, and at the end of a turn
chooses the corresponding category.

• N-of-a-kind: when rolling, keep the largest subset of
equal dice, breaking ties in favor of higher numbers, and
keeping other high numbers when there is no advantage
to making a larger group. Ending a turn, score in the
highest available n-of-a-kind category in which the roll
would earn a non-zero score. If there is no such category,
score zero in the highest available n-of-a-kind category.

• Full House: when rolling, keep all dice that are not
singletons. Ending a turn, score in Full House (whether
or not the score earned is non-zero).

• Straight: when rolling, keep dice to maximize the chances
of completing the longest available straight category.
Ending a turn, score greedily in the straights; if a non-
zero score is impossible then zero the longest available.

• Chance: keep 5s and 6s with two rolls left, and also 4s
with one roll left; at the end of a turn score in Chance.

In all cases, if at the end of a turn the meta-action indicates a
category that has already been used, the meta-action with the
next highest output value is chosen.

The optimal policy and corresponding value of the game
when actions are restricted to these meta-actions can be com-
puted by restricting a in the Bellman equations to game actions
output by at least one of the meta-actions. In all variations
considered, the difference between the optimal policy when
restricted to meta-actions and the unrestricted optimal policy
is less than 0.2%. For example, the unrestricted optimal policy
for the official game (with the forced joker rule) earns an
expected 254.588 points, and the optimal policy restricted to
meta-actions has an expectation of 254.205.

We generate the training set for supervised learning by sim-
ulating games played using the (unrestricted) optimal policy
and sampling one state per game. We then determine the value
of the game actions selected by each meta-action and label the
state with the meta-action with the maximum value. Often,
different meta-actions will output the same game action in a
given position. For example, if the current roll is 12666 then
Sixes, N-of-a-Kind, Full House, and Chance will all output
666. In such cases, we label the example with the meta-action
with the smallest set of possible outputs over all inputs. In the
previous example that would be Sixes since there are only six
possible outputs from that meta-action.

The supervised learning approach works quite well: with
two hidden layers of 100 and 200 nodes and 100,000 training
examples, the mean score of the trained neural network for
the official game is 248.73, which is 97.7% of optimal.

Following the suggestion of Lantz et al. [6] to measure
performance as the availability of computational resources
changes, we vary the size of the training set and the number
of hidden nodes in the neural network. For each combination
of training parameters, we evaluate the performance of the
trained neural network by simulating game play. There are
three stochastic processes involved: sampling game states to

Fig. 2: Strategy ladders for different upper bonus thresholds.

build the training set, training the neural network, and, of
course, playing the game; we repeat each step multiple times
to reduce the variance in our final evaluation. We vary the
number of training inputs while holding the size of the neural
network fixed at 50 and 100 nodes per hidden layer, and
then for holding the number of training inputs fixed at 50,000
while varying the total number of nodes, repeating the process
for selected values of the upper bonus threshold. The fixed
values were chosen as a compromise between performance of
the trained neural network and speed of training and evalua-
tion. Unlike an environment in which the skill is measured
by a value whose range doesn’t change as parameters are
varied, such as percentage of games won or puzzled solved,
for Yahtzee the range of possible scores will vary as the
parameters of the game change. For example, the optimal
policy with an upper threshold of 1 has an expected score of
272.44, which decreases to 237.47 as the threshold increases
to 84. To account for this, we calculate each neural network’s
performance as a percentage of the optimal policy’s expected
score. The results are shown in Figure 2.

Unfortunately, the shapes of the strategy ladders are so
similar that the d metric can’t make useful distinctions between
the different versions of the game given the step size we’ve
initially chosen for computational resources. It is possible that
by adding more steps along the steepest part of the curves
we could get some useful measurements. It is much less com-
putationally intensive to measure the difference between the
performance of the neural network with the lowest amount of
resources and with the highest amount. This does not capture
any information about the shape of the curve, as d is intended
to do, but since our shapes are similar the simple difference
may yield meaningful information. We have computed the
difference ∆ between an untrained neural network (0 training
examples) and a neural network with two hidden layers of
100 and 200 nodes with 100,000 training examples for various
upper bonus thresholds, keeping the value of the bonus fixed
at 35, and for various values of the upper bonus, keeping the
threshold fixed at 63. The results are shown in Figure 3. The
difference between the peak and the lowest point on the curve

Fig. 3: Depth metrics for upper bonus parameters.

for the upper bonus threshold is over 25 standard deviations.
Figure 3 also lists a new metric that may carry useful

information about the shape of the curve: A, the area between
the curve for a particular variation of the game and the upper
envelope, the maximum over all variations of the performance
for a particular level of resources. This matches the intent of
the d metric by rewarding games that allow for consistent im-
provement as resources increase. But A also rewards games for
which there is improvement only after a high level of resources
are reached. That is not an issue for Yahtzee. The A metric also
rewards games for which the neural network with the highest
level of resources has a relatively low level of performance.
If we assume that the gap between the performance of the
neural network with the highest level of resources and the
performance of the optimal policy represents some interesting
strategy that the neural network hasn’t learned, then it makes
sense to have a metric like A that is influenced by that value.

We hope to capture something about the strategic depth of
the Yahtzee variants with both ∆ and A. It is encouraging that
both match what we expect from our subjective evaluation
of the upper bonus threshold: for low values, the bonus is
easy to earn and so there is less strategic depth, and for high
values the bonus is too hard to earn, again resulting in lower
strategic depth. The consistency between the values for A
computed when varying the number of training examples and
when varying the size of the hidden layers also supports the
notion that A is capturing some intrinsic property of the game
variants. Finally, both ∆ and A show peaks relatively close
to the values of the upper bonus threshold and value in the
official game, as one would expect under the assumptions that
Yahtzee was reasonably well playtested, and that ∆ and A are
reasonable measures of strategic depth.

The results for the value of upper bonus are quite different.
Although both ∆ and A (computed for inputs only; Asize

was not calculated because of constraints on computational
resources) show the same trend, it likely they are capturing
something other than strategic depth: as the value increases,
the learned policies’ normalized scores will converge to how
often they earn the bonus compared to how often the optimal
policy does. If that is lower than the neural networks’ per-
formance in other categories, the trend in the difference will
converge from below to a horizontal asymptote.

IV. CONCLUSION AND FUTURE WORK

In some situations, the size of a neural network seems to
be a useful notion of computational resources that can be
used to estimate strategic depth in games using the strategy

ladder approach – the strategy ladders are at least visibly
different, even if Lantz’s d metric is too coarse-grained to
make useful distinctions given our choice of step sizes. For
games for which the optimal policy can be determined, the
number of training examples also seems to be a useful notion
of resources. The area A between the upper envelope for
all game variations under consideration and the curve for a
particular variation may be more useful than d to make fine-
grained distinctions, and should be examined in other contexts
to validate the results described here. The other contexts could
include attempting to optimize all the scoring parameters of
Yahtzee using for example a stochastic hill climber with A as
the objective function, or determining optimal parameters for
other small games.

The results presented here could be further validated by
comparison with those yielded by a similar method with a
different notion of computational resources, perhaps a re-
inforcement learning algorithm with a varying number of
training steps. A reinforcement learning algorithm would also
benefit from not needing the optimal policy to be computed
in order to produce training examples, but would still need a
measure of performance that is not tied to the performance
of the optimal solution as our normalized expected score is.
Extending our methods to the two-player head-to-head version
of Yahtzee with winning percentage against a baseline player
would meet that need.

REFERENCES

[1] D. Ashlock. Automatic generation of game elements via evolution. In
Proc. of the 2010 IEEE Conf. on Comp. Intelligence and Games, pages
289–296, 2010.

[2] C. Browne. Automatic generation and evaluation of recombination
games. PhD thesis, Queensland Univ. of Tech., Brisbane, Au., 2008.

[3] C. J. F. Cremers. How best to beat high scores in yahtzee: A caching
structure for evaluating large recurrent functions. Master’s thesis,
Technische Universiteit Eindhoven, Eindhoven, Netherlands, 2002.

[4] J. Glenn. An optimal strategy for yahtzee. Technical Report CS-TR-
0002, Loyola University Maryland, 2006.

[5] J. R. Glenn. Computer strategies for solitaire yahtzee. In 2007 IEEE
Symp. on Computational Intelligence and Games, pages 132–139, 2007.

[6] F. Lantz, A. Isaksen, A. Jaffe, A. Nealen, and J. Togelius. Depth in
strategic games. In WS-17-01, AAAI Workshop - Technical Report,
pages 967–974. AI Access Foundation, January 2017.

[7] J. Liu, J. Togelius, D. Pérez-Liébana, and S. M. Lucas. Evolving game
skill-depth using general video game ai agents. In 2017 IEEE Congress
on Evolutionary Computation (CEC), pages 2299–2307, 2017.

[8] D. Oranchak. Evolutionary algorithm for generation of entertaining
shinro logic puzzles. In C. Di Chio et al., editor, App. of Evolutionary
Comp., pages 181–190. Springer, 2010.

[9] C. Pedersen, J. Togelius, and G. N. Yannakakis. Modeling player
experience in super mario bros. In Proc. of the 5th Intl. Conf. on Comp.
Intelligence and Games, CIG’09, page 132–139. IEEE Press, 2009.

[10] J. Togelius, R. De Nardi, and S. M. Lucas. Towards automatic person-
alised content creation for racing games. In 2007 IEEE Symposium on
Computational Intelligence and Games, pages 252–259, 2007.

[11] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne. Search-
based procedural content generation: A taxonomy and survey. IEEE
Trans. on Comp. Intelligence and AI in Games, 3(3):172–186, 2011.

[12] T. Verhoeff. Solitaire yahtzee: Optimal player and proficiency test. http:
//www-set.win.tue.nl/∼wstomv/misc/yahtzee/. Accessed: 2020-07-01.

[13] R. Volkovas, M. Fairbank, J. R. Woodward, and S. Lucas. Extracting
learning curves from puzzle games. In 2019 11th Computer Science and
Electronic Engineering (CEEC), pages 150–155, 2019.

[14] P. Woodward. Yahtzee®: The solution. CHANCE, 16:18–22, 09 2012.

