
Combining Influence Maps with Heuristic Search
for Executing Sneak-Attacks in RTS Games

Lucas Critch
Department of Computer Science

Memorial University of Newfoundland
St. John’s, NL, Canada

lrc374@mun.ca

David Churchill
Department of Computer Science

Memorial University of Newfoundland
St. John’s, NL, Canada
dave.churchill@gmail.com

Abstract—Real-Time Strategy (RTS) games have become a
popular domain for AI research due to their large state and action
spaces, as well as complex sub-problems. One popular strategy in
RTS games is the idea of a “Sneak-Attack”, in which one player
attempts to sneak enemy units into the base of their opponent
without being seen, in order to gain the element of surprise. In
this paper we will present initial results on combining influence
maps with heuristic search to produce a path-finding system
which allows us to guide StarCraft drop ships in order to execute
a sneak attack. Our preliminary results show that by combining
these two techniques, we can efficiently and automatically produce
paths that guide our drop ships in a stealthy manner toward the
enemy base, minimizing distance traveled and avoiding enemy
vision of our army.

I. Introduction

Starcraft is a Real-time Strategy (RTS) game that has
become popular for conducting AI research due to its complex
game theoretical properties, and large state and action spaces.
Some of the main sub-problems that exist in the RTS genre
include: real-time planning, collaboration, pathfinding, uncer-
tain decision making, opponent modeling, spatial and temporal
reasoning, and resource management [1]. In Starcraft, a player
wins the game by gathering resources, constructing an army,
and destroying the units of their enemy, with the player acting
as a general, issuing commands to each unit in the game to
carry out those specific tasks. When designing an AI system
for Starcraft, that system must perform all decision making
related to those tasks, as well as carrying out the specific
commands required to execute them.
One of the ways in which players can gain a competitive

advantage in an RTS game is to execute a sneak-attack, in
which the players units approach the enemy base in such a
way that they avoid being seen by the opposing army. By doing
this, the player’s army can surprise the enemy and proceed to
deal damage to the enemy base before they have a chance to
prepare or react properly. One way that a player can execute an
effective sneak-attack strategy is by constructing a flying unit
known as a drop ship which can carry and transport units over
environment geometry and base defenses and deposit them
deep into the enemy base to attempt to kill the worker units
of the enemy, which is known as a drop strategy. This paper
attempts to solve the problem of constructing these sneak-

Fig. 1: An example influence map of around 2 enemy units
with vision radius’s 8 and 9. Brightest red tiles are the enemy
units. Each unit has a red radius showcasing their vision
influence. The overlapping areas have higher values, denoting
regions of higher repulsion.

attack paths by combining the efficiency of heuristic search
with the intuitive representation of influence maps.
In order to construct these paths, we must perform a shortest

path path-finding method in conjunction with the concept of
avoiding enemy vision as we approach the goal. Inspired by
similar work in [2], we combine the A* path-finding algorithm
with an influence map that builds up areas of repulsive
influence around enemy vision and damage. The influence map
is used to construct the cost and heuristic functions for A*,
resulting in the construction of paths to the enemy base which
balance minimizing enemy detection as well as distance to the
enemy base. An example influence map of enemy unit vision

978-1-7281-4533-4/20/$31.00 c©2020 IEEE

Algorithm 1 Influence Calculation
1: (sx, sy) ← size of Starcraft map
2: visionMap[][]← zeros(sx, sy)
3: damageMap[][]← zeros(sx, sy)
4: pathMap[][]← zeros(sx, sy)
5: p← 1.0
6: r ← Starcraft unit vision radius
7: d← max distance away from center of r (is ux,y)
8: pBase← Player base
9: // calculate vision and damage influence maps
10: for Starcraft unit u ∈ enemyUnits do
11: r ← u’s vision radius
12: d← max distance away from center of r (is ux,y)
13: for (x, y) from (0, 0) to (sx, sy) do
14: dist← distance from (x, y) to ux,y
15: if dist < v then
16: Influence i← p− (p× dist

d)4

17: visionMap[x][y] += i
18: damageMap[x][y]← p

19: // calculate common path influence map
20: for base not pBase do
21: path← path from base to pBase
22: for posx,y in path do
23: for (x, y) from (0, 0) to (sx, sy) do
24: dist← distance from (x, y) to posx,y
25: if dist < v then
26: i← p− (p× dist

d)4 // influence
27: pathsMap[x][y] += i

can be seen in Figure 1, with high positive numbers denoting
areas of higher repulsion (cost) when path-finding.

II. Influence Maps
Influence maps are data structures which are used to com-

pute and store influence: a value that is typically used to either
attract or repel specific behaviors to or from a given region
within an environment. For example, a section of lava that
damages a player may be given a repulsive value, while a
health pickup may be given an attractive value. In our case,
we wish to construct our influence map such that our paths
will avoid areas of the environment that can be seen by enemy
units, or reached by the range of the enemy unit weapons. We
will then use these values as the cost function for our path-
finding algorithm such that our units will minimize the amount
of time that they spend near these areas.

Influence maps are commonly implemented as 2-
dimensional grids/arrays which store the influence values
located at that associated point of the environment. A point
of interest will have some influence value, and that value
propagates outward in the field. The values gradually fade
to zero, or go to some cutoff - such as a value threshold
or a distance. Influence is used to attract or repel inside the
space, based on the values (positive repel, negative attract for
example). Grid representations can be intuitively overlapped on
a grid based game environment, as well as overlap with other
influence maps to combine different influence information.

The the case of Starcraft, the build-tile resolution of a
typical map is approximately 128 by 128 units in size, up
to a maximum of 256 by 256. This means that we can
construct an influence map as a 2-dimensional array with the
same dimensions, and have it easily fit into the memory of
a typical modern computer, with each cell in the influence
map representing a build-tile region within the Starcraft map.
An example of such a construction can be seen in Figure 1,
which shows two enemy units imparting influence based on
their vision radius.

A. Constructing the Influence Map
In order to construct the best influence map for totally

avoiding enemy vision, we decided to combine three differ-
ence influence maps, each calculating influence for different
metrics. These maps are as follows:

• Vision Map: Stores influence of seen (or previously seen)
enemy vision radius. This map will help us avoid areas
that can be seen by the enemy, giving us the best chance
to surprise the enemy upon reaching the goal.

• Damage Map: Stores influence based on the damage that
enemy units can deal to specific areas of the map. Given
that we must eventually enter an area of enemy vision,
we would prefer to avoid the areas that can be attacked
by enemy units.

• Common Path Map: Stores influence based on paths
calculated between bases on the map, which are often
patrolled by enemy scouts. By avoiding these commonly
walked paths, we may further avoid detection.

Individual influence values are calculated based on the
following equation presented in [2]:

mx,y = p− (p ∗ (dist
d

))4 (1)

where mx,y is the influence at position (x, y) of map m, p
is the max propagation value, and d is the maximum distance
away from the center of radius v. An example of influence
calculated by this formula can be seen in Figure 3.

III. A* Search Algorithm

A* is a popular search best-first search algorithm that
continuously expands nodes in a priority queue until a goal is
found, or everything in the graph has been seen. This priority
queue is sorted as a function of a search node n, denoted f(n),
with:

f(n) = g(n) + h(n) (2)

where g(n) is the sum of costs c(n) of the path so far to node
n and h(n) is the heuristic estimate of the path cost from the
current node to the goal node. Given a consistent heuristic
h(n), A* is guaranteed to find a path that minimizes the total
path cost. If the cost is a distance function only, then it will
find the shortest path between two locations. However, if we
want to minimize another cost function such as minimizing
enemy vision along a path, we must use a more custom cost
function.

2

A. Influence Maps as Cost
Our implementation combines multiple influence maps to

be used to guide A* as the cost and heuristic function. At
a given node n, the custom cost function c(n) will now
compute the following values: dist = the cost of traveling a
given distance on the map, vis the influence cost of entering
enemy unit vision, dam = influence cost of taking enemy
damage, and path = influence of traversing onto one of the
map’s common path tiles. The cost is the computed as a
tuple, c(n) = {dist, vis, dam, path}, which is sorted based on
the following priority, in order of higher amount of repulsive
influence: vis > dam > path > dist.
When we use this new cost function within the A* search

algorithm, its priority queue will sort nodes based f(n) =
g(n) + h(n), with g(n) being equal to the sum of node costs
to that node so far in the search tree. This means that the
resulting paths will be constructed with avoiding the enemy
vision as the highest priority, and path distance being the
lowest priority. The resulting paths will attempt to minimize
travel time / distance (influence costs at that location are zero),
while being sure to avoid areas where the drop ship may be
seen or damaged by the enemy army (influence costs at that
location are non-zero).

IV. Methodology
In order to use these influence maps with Starcraft, we built

a system that integrates with a live Starcraft game being played
by UAlbertaBot [3] using BWAPI [4]. The program reads
relevant information from Starcraft and UAlbertaBot every
frame, and uses that information to fill out the influence maps.
For visual reference, it also has a visualizer which draws the
game environment as a 2D grid, which can be seen in many
Figures in this paper. Everything that is relevant to navigation
is stored, such as walls, walkable tiles, player units, enemy
units, and last known enemy unit locations. Each frame of
the game, the influence maps are recalculated based on the
updated positions of the units in the game.

The algorithm for each influence map can be seen their
respective commented section in Algorithm 1.

• The common paths are found at the start of a game and
stored, as these do not change throughout the game. The
paths are found with a simple A* search from the player’s
base location to every possible enemy base location. The
paths influences are calculated by propagating influence
from each node along the paths, using the vision radius
of a worker unit as the radius.

• The enemy vision influence map requires recalculations
often as enemy units are constantly moving. For every
enemy unit that has been seen by the player, influence
propagates from their positions until reaching the end of
their vision radius.

• Similar to the vision map, but checks enemy unit weapon
ranges instead of vision radius, and the influence is a
static number based on the damage of the air weapon.

V. Experiment
We tested our system by performing a drop strategy using

UAlbertaBot, with the path taken by the drop ship being

Fig. 2: Comparison of normal path and avoiding enemy vision
path

calculated using the proposed method. An example sneak-
attack drop ship path can be seen on the right hand side of
Figure 2, with a more standard distance minimzing path being
seen on the left. You can see that this path (in yellow) avoids
enemy vision by turning outside the vision radius of enemy
units, and proceeding to sneak around to the back of the base
where the enemy is most vulnerable. Another example of this
can be seen in Figure 3, where the generated path also avoids
commonly used paths in the game between the bases. So far,
this system has worked in generating paths that are similar to
those produced by humans when attempting similar strategies.

VI. Future Work

As this research is still in progress, we plan on making
several improvements to the current system, as well as per-
forming experiments to demonstrate the effectiveness of these
new paths over those which already exist within UAlbertaBot.
The main experiment we wish to run is to test whether the
inclusion of this new system can improve the performance of
existing agents (such as UAlbertaBot) in a competition setting.
We wish to re-run the previous year’s AIIDE Starcraft AI
Competition with both the previous version of UAlbertaBot,
and new version which includes the proposed sneak-attack
system. We can then tell whether or not this system helps
improve the overall performance of the bot in the competition
by comparing its performance the the previous version.
We also wish to test whether influence maps can be used

exclusively, without the need for using another algorithm such
as A*. By including distance as an influencing factor, we may
be able to add an attractive influence toward the enemy base,
and simply navigate toward the areas of highest influence. This
method however has not yet been implemented, and remains
for future testing.

3

(a) Terrain view of the 4-player Starcraft map: Andromeda (b) Starcraft map with no influence fields visible

(c) Starcraft map with vision field visible (d) Starcraft map with all influence fields visible

Fig. 3: Three views of Starcraft maps with different influence maps visible. (a) shows the terrain view of an example 4-player
StarCraft map: Andromeda, in which potential base locations can be seen in the four corners of the map. (b) shows our custom
visualization tool representation of the same map during a game, with two bases occupied by units for our player (green) and
the enemy (red).

References
[1] M. Buro and T. M. Furtak, “RTS games and real-time AI research,”

Proceedings of the Behavior Representation in Modeling and Simulation
Conference, 2004.

[2] D. Mark, Modular tactical influence maps, 2015.
[3] D. Churchill and M. Buro, “Build order optimization in StarCraft,” in

Proceedings of the 7th AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, AIIDE 2011, 2011.

[4] A. Heinermann, “Broodwar API,” https://github.com/bwapi/bwapi, 2013.
[Online]. Available: https://github.com/bwapi/bwapi

4

