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Abstract—The impressive performance of Monte Carlo Tree
Search (MCTS) based game-playing agents in high branching-
factor domains such as Go, motivated researchers to apply and
adapt MCTS to even more challenging domains. Real-time strat-
egy (RTS) games feature a large combinatorial branching factor
and a real-time aspect that pose significant challenges to a broad
spectrum of Al techniques, including MCTS. Various MCTS
enhancements were proposed, such as the combinatorial multi-
armed bandit (CMAB) based sampling, state/action abstractions,
and machine learning. In this paper, we propose to employ move
pruning as a way to improve the performance of MCTS-based
agents in the context of RTS games. We describe a class of
possibly detrimental player-actions and propose several pruning
approaches targeting it. The experimentation results in yRTS
indicate that this could be a promising direction.

Index Terms—Monte Carlo Tree Search, Move Pruning, Real-
Time Strategy, Game AI, yRTS

I. INTRODUCTION

The complexity of real-time strategy (RTS) games, from
an Al perspective, originates from the combinatorial structure
of their state and decision spaces. In comparison with classic
benchmark games such as Chess or Go, the dimensionality of
both state and decision spaces in an RTS game is many orders
of magnitude higher [22]. Instead of controlling a single unit
in a turn-based fashion, RTS players control multiple units
simultaneously in real-time, and usually in a much larger board
(map) size. Moreover, the branching factor in an RTS game
grows exponentially with the increase in the number of units
positioned on the map.

Due to the game’s complexity, conceiving a human-
challenging RTS game-playing agent is a difficult task to
undertake. The predominant approach followed by researchers
and practitioners in the domain is to decompose the task into
manageable subtasks targeting various degrees of abstraction.
Most commonly, an RTS agent combines high-level strategic
components and low-level tactical components. Such decom-
position is inspired by the way human players interweave
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micro- and macro-management, and it is shown to be effective
by numerous implementations [3], [15], [17].

Holistic search-based approaches such as Monte Carlo Tree
Search (MCTS) [5] enjoyed a remarkable success in computer
Go, as demonstrated by AlphaGo [25]. However, in RTS
games, MCTS-based agents struggle with the enormous deci-
sion space and fail to scale suitably when the branching factor
grows past a certain threshold. Such downside restricts MCTS
applicability to limited scenarios, such as tactical planning or
small maps. Abstracting the decision space is a tried and tested
technique for scaling MCTS-based agents to larger scenarios
[22], at the expense of sacrificing tactical performance due to
the coarser actions considered.

We propose an approach to increase the performance and
scalability of search-based techniques, particularly MCTS-
based, by pruning unnecessary and detrimental player-actions
from the decision space of an RTS game. We inspect the low-
level structure of the search space and identify detrimental
player-actions through domain knowledge. Next, we apply
multiple hard-pruning approaches to remove those player-
actions during the search. The goal is to reduce the branching
factor and explore more promising player-actions. Our ap-
proach targets a class of player-actions we identify as Inactive
Player-Actions (IPAs) because they tend to keep at least one
unit in an inactive state, which can be problematic. The
experiments’ results using UCT (Upper Confidence bounds
for Trees) and NaiveMCTS in pRTS show a considerable
performance gain relative to the map’s size.

The rest of this paper is organized as follows: Section
IT reviews some background knowledge about RTS games,
uRTS and MCTS. Section III presents the related state of the
art and Section IV describes IPAs and the proposed move
pruning approaches. Experimental results are presented and
discussed in Section V, and Section VI ends the paper with
some conclusions and future perspectives.

II. BACKGROUND

A. Real-Time Strategy Games

A sub-genre of strategy video games, real-time strategy
games usually simulate a warfare situation where each side
of the game is given control over a military base and is tasked



with collecting resources and recruiting troops. To emerge
victorious, the player must fully destroy his opponent’s forces.
RTS games progress in real-time, signifying that players may
act simultaneously under a very short decision cycle, and the
effect of executing an action is not necessarily immediate.
Usually, an RTS game is played from a top-down perspective
over a large grid-based map, covered by a fog-of-war layer
reducing observability and increasing the game’s difficulty and
complexity. Moreover, the execution of a unit-action can be
influenced by some stochastic parameters, introducing non-
determinism to the mix. Players control their units by issuing
unit-actions to each. A player-action is the combination of
unit-actions issued simultaneously in the same game cycle.
A typical RTS game is defined as a zero-sum, multi-player,
non-deterministic game with imperfect information. The size
of an RTS state space and branching factor, as estimated in
a typical STARCRAFT setting [22], reaches 10'%%5 possible
states and 10°° possible actions at a decision point. In contrast,
Chess and Go possess a state-space estimate of 1047 and 10'7!,
respectively, with an average branching factor equaling 36 in
Chess and 180 in Go. Such proportions predict a difficult task
for an RTS game-playing Al. As per [19], an RTS game can
be defined as a tuple G = (S, A, P, 7, L, W, S;n;t), where:
o S : The set of all possible states (state space).
o A : The set of player-actions (decision space).
o P :The set of players. P = {max, min} for two players.
e 7: 59X Ax A — S : The state transition function. It
takes a game state at time ¢ and a player-action for each
player, then returns a new game state at time ¢ + 1.
o L:SXxAxP — {true, false} : Determines the legality
of a player-action in a given state for a specific player.
e W: S — PU{ongoing,draw} : Determines the winner,
if any, or whether the game is a draw or still ongoing.
e Sinit €S : The initial state.

B. uRTS

Conducting Al research on commercial RTS games can
be a daunting experience since most games do not offer a
suitable API for this purpose. To mitigate this shortcoming
several independent solutions were developed, such as ORTS,
the WARCRAFT port, Wargus, and the unofficial STARCRAFT
interface, BWAPI. Much later, an official API and toolset for
STARCRAFT II were made available in a collaborative effort
between Blizzard and DeepMind [28]. Additionally, several
independent RTS AI research platforms have emerged, such
as uRTS [19], ELF [27], and DeepRTS [1].

uRTS is a stripped-down RTS game simulator designed for
Al research, featuring all the challenging aspects of an RTS
game in a minimalistic form, and including an efficient for-
ward model useful for implementing simulation-based search
approaches. Figure 1 shows a typical uRTS match. Each
player controls two types of structures (Base and Barracks)
and four types of mobile units (Worker, Light, Ranged, and
Heavy). The Base produces Worker units, and the Barracks
produce assault units, in exchange for resources harvested by
Workers. The game map consists of an arbitrary-sized 2D grid.
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Fig. 1. A pRTS match. A player’s units can be distinguished by the color of
their outline. The number of resources held by a unit is displayed on it.

Multiple interesting online adversarial planning approaches
were conceived in uRTS, as detailed in [23].

Since 2017, a uRTS AI competition is held as part of
the IEEE Conference on Games (CoG, formerly CIG) [20].
The competing agents participate in a round-robin tournament,
in at least one of the three tracks: full-observability, partial-
observability, and non-determinism (dropped in the 2020 edi-
tion). Our proposed approach can be useful in any track.

C. Monte Carlo Tree Search (MCTS)

The goal of an RTS game-playing agent is to compute an
optimal player-action a € A at each decision cycle ¢t where the
agent can act. MCTS is a sampling-based search framework
applicable to sequential decision problems in large decision
spaces unapproachable to systematic search techniques. MCTS
estimates the value of actions, sampled using a tree policy,
through random simulations. The MCTS algorithm iteratively
constructs a game tree following a 4-step process at each
iteration. The algorithm can be halted anytime to obtain a
decision. An MCTS iteration proceeds as follows:

1) Selection: Select a node with unexplored children fol-
lowing a tree policy.
2) Expansion: Create and attach a new child node.
3) Simulation: Start a simulation (playout) from the new
node following a playout policy.
4) Backpropagation: Backpropagate the simulation’s re-
sults starting from the new node up to the root node.
The most visited decision is usually the one returned.
Given enough computation budget and a proper explo-
ration/exploitation balance in the tree policy, MCTS is guar-
anteed to find the minimax solution in the limit [13]. UCT
uses UCBI as a tree policy, treating the selection phase as a
multi-armed bandit (MAB) problem [5]. Although remarkably
successful in Go, UCT does not perform as well in RTS
games, due to the rapid growth in the branching factor with
the increase in the unit count. NaiveMCTS was designed to
better handle the combinatorial search space in RTS games
by formulating the selection phase as a combinatorial MAB
(CMAB) [19]. NaiveMCTS builds on a naive sampling ap-
proach based on a naive assumption that considers the reward
estimate of a player-action as the sum of the reward estimates
of the underlying unit-actions. In our experiments, we tested
our approach on both UCT and NaiveMCTS.



III. STATE OF THE ART

Dealing with the enormous RTS decision space in the
context of MCTS is an open problem continuously receiving
contributions. By treating the selection phase as a CMAB,
NaiveMCTS effectively adapts MCTS to combinatorial search
spaces. Nevertheless, the decision space remains the same, and
the algorithm still suffers from high dimensionality. Downsiz-
ing the search space’s dimensionality is usually done through
action abstraction or machine learning.

Abstracting the search space through expert-authored scripts
is an effective way to considerably reduce the branching factor.
Instead of searching in the low-level player-actions space,
Justesen et al [12] adapted UCT to search in the space of
player-actions suggested by scripts. NaiveMCTS was similarly
adapted by Moraes et al [16] using asymmetric abstractions
[15] to search in multiple levels of abstraction. Puppet Search
[4] uses UCT to search in the space of choice points inserted
in scripts. Guided NaiveMCTS (GNS) [30] biases the selection
phase to consider scripted actions first. Other search algorithms
were also combined with action abstraction, such as local
search in Portfolio Greedy Search (PGS) [6] and minimax in
Adversarial Hierarchical Task Networks (AHTN) [21].

Machine learning can be used to guide node selection
by learning a tree policy from expert traces. AlphaGo [25]
employed a CNN-based policy network, trained from a large
database of expert Go replays, and improved via a reinforce-
ment learning phase. Later work on AlphaZero [26] fully
discarded expert knowledge. Ontafién informed node selection
using a learned Bayesian model in InformedMCTS [18]. Yang
and Ontafién [29] later demonstrated the effectiveness of the
C4.5 classifier for such tasks, due to its speed and accuracy.

If we adjust our perspective, all the aforementioned ap-
proaches can be regarded as move pruning approaches [31].
By focusing on a set of promising expert-based player-actions,
these approaches effectively prune the search space of all the
remaining player-actions, significantly reducing the branching
factor. Such practice can also become unsafe and prone to
exploitation, due to the coarser player-actions considered, re-
sulting in a loss of tactical performance. To address this issue,
several approaches combining low- and high-level search have
emerged, such as [3], [17] and [16].

Directly pruning the player-actions responsible for weak
performance can be an alternative approach towards focusing
the search on promising actions, without compromising tacti-
cal strength. In the context of Chess [9] and Shogi [10], several
forward pruning methods such as Null-move pruning and
futility pruning were utilized to reduce the branching factor
and enhance o search. In Go, a domain-dependent pruning
approach was implemented in UCT [11], exploiting territory
information. Similar MCTS improvements were applied in
Hex [2], Havannah, [7] and DeadEnd [8]. In video-games,
Sephton et al [24] enhanced MCTS by applying a knowledge-
based move pruning approach for the strategic card game,
Lords of War.

We propose a domain knowledge-based hard-pruning ap-

TABLE I
THE UNIT-ACTION TYPES AVAILABLE FOR EACH UNIT-TYPE IN pRTS

’ Move ‘ Attack ‘ Harvest ‘ Return ‘ Produce | Wait

Worker . . . . . .
Light . ) .

Ranged . ° .
Heavy . ° .
Base . °

Barracks . .

proach for MCTS agents in RTS games, targeting a specific
type of player-actions prevalent in all RTS games.

IV. MOVE PRUNING

We propose to act directly on the decision space and
hard-prune a subset of decisions we deem irrelevant and/or
detrimental to the performance of MCTS. By doing so, MCTS
will be freed from sampling those decisions and simulating
their outcomes. The recovered computation time will be spent
on exploring more relevant and significant decisions, which
would improve the playing strength and scalability of MCTS.

As a first attempt, we chose to focus on player-actions
having the highest chance of misleading search and negatively
impacting the playing strength. Out of these player-actions,
we believe Inactive Player-Actions (IPAs) naturally come first.
Thus, we implemented several pruning approaches that keep
a predefined number (fixed or relative) of those player-actions
and prune the remaining. We will briefly discuss the structure
of RTS player-actions in the next section and then define IPAs.

A. Unit-Actions and Player-Actions

In a typical RTS game, each unit type can execute a distinct
set of actions known as unit-actions. Table I enumerates the
unit-action types executable by each unit-type in uRTS. The
Worker unit-type is the most versatile, followed by assault
units (Light, Ranged and Heavy) and structures (Base and
Barracks). The attributes of a unit-type define the effect of
its unit-actions. For instance, the damage attribute controls
how much damage a unit-type causes when executing the
Attack unit-action. Thus, even for common unit-actions, each
unit-type may behave differently. All unit-action types, except
Wait, require an argument that determines the target of the
action. The Wait unit-action type requires a numeric argument
specifying the number of cycles ahead at which the unit must
remain inactive. Wait is the only unit-action type unaffected
by unit attributes and executable by all unit-types.

A player-action p € A issued to n units at a given game
cycle can be regarded as a tuple, p = (a1, ag, ..., ay), where
each component a; is a unit-action issued to the i-th unit.
Given the average number of legal unit-actions available to
each unit, m, the number of all possible player-actions or the
branching factor, b, can be estimated as b = m". We seek
to lower b by finding ways to decrease m without negatively
impacting the playing strength.



B. Inactive Player-Actions

We define an Inactive Player-Action (IPA) as a player-action
having at least one Wait (inactive, idle, no-op) unit-action as a
component. Being the most prevalent non-critical unit-action,
Wait unit-actions make for a good pruning target. The Wait
unit-action is continuously available to all units, regardless of
their situation. Thus, it strongly contributes to the inflation
of the search space. Nonetheless, Wait unit-actions can be
advantageous for a unit, usually in the following situations:

e Trapped unit: No active unit-action is possible. The unit
is caught in a situation where all possible unit-actions
are illegal. Waiting for a predefined duration is the only
option to choose in hopes the situation is resolved.

o Tactical waiting: The unit anticipates for a chance to
execute a high-value unit-action. Here, the unit expects a
sub-optimal action by an opponent unit (via lookahead)
and chooses to Wait in anticipation for it. Executing the
high-value action happens afterward. This behavior is
frequently observed in tactical skirmishes.

Although potentially useful, Wait unit-actions can also have
a devastating effect on the playing strength if improperly
chosen. According to our observations, it is not unlikely for
a search-based agent (MCTS or otherwise) to assign a Wait
unit-action to a unit in a situation where better options exist. In
such cases, doing nothing can be the worst decision possible.
We identify three disadvantageous situations where Waiting
cannot be a sound decision:

o Waiting in front of opportunity: Here, the unit can seize an
immediate opportunity, such as Harvest resources, Return
harvested resources, or safely remove an opponent unit.
Instead, the unit is assigned Wait.

o Waiting in face of danger: The unit is facing an immediate
danger and holds the necessary options to avoid it, but
instead, it is assigned a Wait unit-action.

o Waiting frequently: The unit is assigned Wait unit-actions
more often than the other unit-actions, in the absence of
immediate dangers/opportunities, making it less effective
in pursuing opportunities and almost passive.

The presence of one Wait unit-action in a player-action
(thus, IPA) is enough to introduce a risk of encountering one of
the disadvantageous situations. The more Wait unit-actions in
an IPA, the higher this risk gets. Thus, we believe that pruning
the majority of IPAs from the search space, while preserving a
fraction as a safety measure, to account for trapped units and
tactical waiting, can be beneficial to MCTS.

C. Pruning Techniques

The radical pruning approach would be to remove all IPAs
from the search space, basically removing the Wait unit-action
from the set of unit-actions of all unit types. Thus, diminishing
m by 1 and obtaining a branching factor b’ = (m—1)", which
represents a considerable decline from b. As an example, if we
have m = 5 unit-actions on average in a given game state with
n = 6 units, then b ~ 1.56 x 10* and &’ =~ 4 x 10%. The total
number of IPAs removed would be: v = b — b’ = 1.16 x 10%.

The reduction is significant, but we intend to keep a portion
of IPAs to deal with trapped units and tactical waiting.

Detecting trapped units is a simple task. But dealing with
tactical waiting can be elusive since there is no simple way to
differentiate between waiting as a tactical choice, and waiting
as a bad decision until witnessing the consequences. Random
playouts do not offer a reliable answer in that regard. We
propose four pruning approaches that capture IPAs and decide
whether to allow or prune them according to a given parameter.
These approaches preserve all IPAs involving trapped units and
allow a predetermined number/rate of random IPAs in hopes of
preserving tactical waiting situations. The remaining IPAs are
all considered disadvantageous and are systematically hard-
pruned. We do not re-insert pruned IPAs because we consider
the non-pruned player-actions more urgent to explore. The
pruning approaches are described as follows:

o Random Inactivity Pruning - Fixed (RIP-F(k)): Allow
a fixed number k of IPAs.

« Random Inactivity Pruning - Relative (RIP-R(p)):
Allow a percentage of IPAs p relative to the total number
of removable IPAs.

o Dynamic RIP-F (DRIP-F(kq, k2)): Allow k; IPAs when
the agent’s units outnumber the opponent’s units and ko
[PAs otherwise.

¢ Dynamic RIP-R (DRIP-R(p;, p2)): Allow p; percent
of IPAs when the agent’s units outnumber the opponent’s
units and p, percent of IPAs otherwise.

The intuition behind dynamic approaches is to equalize the
chances of performing tactical waiting when the agent does not
hold a numerical advantage. This is done by allowing more
IPAs when the agent is outnumbered (ko > k1 or pa > p1).

These approaches can be easily implemented as part of any
search algorithm, as shown in Algorithm 1. Each time a player-
action a gets sampled, PRUNE(a) is called to decide whether
to keep or replace a, in case it is an IPA. If a is a Non-
IPA or an IPA involving a trapped unit, it will be returned
as-is (lines 3 and 9). ISIPA(a) returns true if a has at least
one Wait unit-action, and TRAPPEDUNIT(a) returns true if a
Wait unit-action in a belongs to a trapped unit. The algorithm
keeps track of previously-pruned IPAs in the prunedIPAs list
to prevent re-insertions. The conditional expression in line 4
defines the pruning condition, which is satisfied either if a was
previously pruned, or if CHECKPARAM() returns true.

The pruning approaches differ in the implementation of
CHECKPARAMY(). For instance, in RIP-F(k), CHECKPARAM()
returns true only if the number of IPAs allowed is higher than
k. The loop in lines 5-8 will keep re-sampling for new player-
actions until a is replaced with a non-IPA. Finally, a new non-
IPA or an IPA allowed by CHECKPARAM() is returned.

V. EXPERIMENTATION AND RESULTS

To study the effect of pruning IPAs on MCTS, we imple-
mented the four aforementioned pruning techniques in UCT
and NaiveMCTS and conducted various experiments in uRTS.
Indeed, UCT’s performance suffers greatly in RTS scenarios
due to UCB1’s limitations in combinatorial search spaces [19],
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Fig. 2. Results of the pruning analysis experiments. Each data point represents 500 matches between a basic MCTS agent and the same agent enhanced with
IPA pruning. The vertical axes represent the score obtained by the latter agent. The score is calculated as such: score = ((Wins+ (Draws/2))/500) x 100.
A match is considered a draw if no winner has been decided after 3000, 3500, and 4000 cycles in each map of size 8 X 8, 12 x 12, and 16 X 16, respectively.

Algorithm 1 The general IPA pruning algorithm.

1: function PRUNE(a) > a : A sampled player-action
2 if ISIPA(a) then

3 if TRAPPEDUNIT(a) then return a

4 if a € prunedIPAs or CHECKPARAM() then

5: repeat

6 prunedIPAs.addlfNotExist(a)

7 a <— SAMPLEACTION(gameState)

8 until 1SIPA(a) == false

9

return a

nevertheless we wanted to test if pruning IPAs would alleviate
the dimensionality burden and results in performance im-
provement. Integrating IPA pruning in UCT and NaiveMCTS
generated new agents that we refer to by suffixing the acronym
of the technique to that of the original search approach. For
instance, the agent using RIP-R with UCT or NaiveMCTS is
noted as UCT-RIP-R(p) or NMCTS-RIP-R(p).

We first analyzed the performance of RIP-F and RIP-R
relative to the number of IPAs allowed, the map’s size, and
the MCTS algorithm in use. We then took the top-performing
pruning approaches for each MCTS algorithm and map size
and performed a round-robin tournament with other pRTS
agents. Afterward, we examined the impact on the branching
factor and performed a scalability test in larger maps. The
experiments were carried out on two PCs with Intel Core
i5 and i7 CPUs, clocked at 3.1Ghz and 3.4Ghz, respectively,
using the latest version of uRTS as of 30th March 2020.

A. Pruning Analysis

To analyze the influence of IPA pruning on the performance
of MCTS, we ran a series of experiments involving each
MCTS agent and non-dynamic IPA pruning approach. We
defined two distinct sets, F' and R, composed of a selection
of values that can be taken by the parameters of RIP-F(k) and
RIP-R(p), respectively. Next, we ran 500 matches (switching
sides after 250 matches) between the MCTS agent enhanced

with an IPA pruning approach, and the non-pruning version
of the same MCTS agent for each respective value in F' or R.
The process was repeated for each basesWorkers map of size
8 x 8, 12 x 12 and 16 x 16. We define I’ and R as follows:

« F=1{0,1,5,10,50,100, 500, 1000, 5000, 10000}

« R=1{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1}

The total number of matches played for a single MCTS
agent amounts to (500 x |F| x 3) + (500 x |R]| x 3), yielding
63000 matches for both UCT and NaiveMCTS. In all experi-
ments, we kept the default UCT and NaiveMCTS parameters
as defined in the uRTS codebase, for all variants. Agents
were given 100ms per frame as a computation budget. The
experiment results are expressed in Figure 2’s plots.

Overall, we can see that IPA pruning is responsible for
a performance gain of variable rates, relative to the number
of TPAs allowed and the branching factor represented by the
map’s size. In UCT-RIP-F, allowing a small number of IPAs
(0 < k < b) significantly increases UCT’s performance.
However, the more IPAs are allowed, the more performance
decreases until pruning losses its effect (k > 1000). The same
trend is witnessed in UCT-RIP-R. Allowing a small percent of
IPAs (0.1 < p < 0.3) increases UCT’s performance, but the
more we raise p the more performance drops. We note that
UCT-RIP-R(p = 1) and UCT-RIP-F(k > 1000) are equivalent
to non-pruning UCT.

The highest performance gain was recorded in the smallest
8 x 8 map with the lowest branching factor, and the lowest
gain was recorded in the largest 16 x 16 map. This is expected
from UCT since its sampling strategy (UCB1) is ineffective in
combinatorial search spaces. Thus, pruning IPAs is not enough
to scale UCT’s performance. Pruning all IPAs (k = 0 or p = 0)
hurts UCT’s performance in larger maps due to the large
number of IPAs encountered. This causes frequent player-
action re-samplings that rapidly consume the computation
budget, leaving very little time to exploitation. Although this
effect is offset in the 16 x 16 map by the large number of
draws, it is quite clear in the 12 x 12 map.

From the perspective of NaiveMCTS, IPA pruning exhibits
the same effect as in UCT, with two key differences. First, in



the smallest 8 x 8 map, NaiveMCTS performs optimally when
more [PAs are allowed (in comparison with UCT), that is,
when 5 < k < 50 in NMCTS-RIP-F and p = 0.9 in NMCTS-
RIP-R. This is probably because naive sampling already
handles small scenarios well and can gain an advantage if
a portion of IPAs is kept to explore tactical waiting situations.
However in larger maps, pruning all IPAs (k = 0, or p = 0)
yields the highest performance gain. Here, due to the bigger
branching factor, pruning IPAs significantly contributes to the
better utilization of the computation budget.

The second difference with respect to UCT is the scalability
of performance, relative to the increase in the branching factor.
As opposed to UCT, NaiveMCTS enhanced with IPA pruning
delivers its best performance in the largest 16 x 16 map,
followed by the 12 x 12 map. Having fewer IPAs in the
search space seems to allow naive sampling to sample more
interesting player-actions, instead of wasting time on IPAs.
Moreover, pruning IPAs increases the movement frequency of
units, resulting in an enhanced ability to explore large maps.
We will see further how this translates to larger maps.

B. Best Pruning Approaches

Concerning dynamic pruning approaches (DRIP-F and
DRIP-R), we have conducted a similar experiment using UCT,
by fixing k1 (or py) to the optimal k (or p) value found for
each map size and performing 500 matches for each ks (or p2)
value from F' (or R). We omitted the results because of space
constraints. For NaiveMCTS, dynamic pruning did not bring
any improvement over non-dynamic approaches, based on
preliminary tests. Thus, performing extensive experiments was
not necessary. The best performing IPA pruning approaches for
each map-size and MCTS algorithm are shown in Table II.

TABLE I
BEST PERFORMING PRUNING APPROACHES

| 8x8 [ Score | 12 x 12 | Score [| 16 x 16 [ Score
UCT DRIP-F(1,0) | 82.2 | DRIP-R(0.2,04) | 76.8 || RIP-F(1) | 63.9
NaiveMCTS | RIP-R(0.9) | 62.3 RIP-R(0) 73.3 || RIP-FO) | 78.6

For UCT, dynamic approaches work best in the small and
medium-sized maps due to the frequent encounters between
opposing units. In the largest map, exploration becomes more
urgent, rendering the dynamic approaches ineffective.

C. Performance Analysis

To further assess the performance impact of IPA pruning on
MCTS agents, we have run a round-robin tournament between
8 uRTS agents, including two IPA pruning MCTS agents,
under pRTS competition conditions. The tournament consists
of 100 iterations, where in each iteration, every agent plays a
match against the other agents resulting in 8 x 7 x 100 = 5600
matches in each of the maps used previously. The participat-
ing pRTS agents include four baseline agents and one top
performing agent from 2019’s uRTS competition, MixedBot:

e NaiveMCTS: The original unmodified NaiveMCTS.

TABLE III
GLOBAL TOURNAMENT RESULTS (ROW AGENT VS. COLUMN AGENT)
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Fig. 3. The tournament results in each of the three map sizes. The vertical
axis represents the score obtained against all agents.

e RandomBiased: Selects actions randomly, with a bias
towards attacking and harvesting.

o POWorkerRush: Continuously produces workers and
sends them to attack the opponent.

e POLightRush: Same as the above, but using Light units.

e MixedBot: Relies on two separate agents; Tiamat [14]
for strategic decisions and Capivara [16] for tactical
decisions. Both based on search space abstraction through
scripts and tuned for different map sizes.

In addition to the following IPA pruning agents:

e NMCTS-RIP: NaiveMCTS integrating the best perform-
ing IPA pruning approach for each map size, as defined
in Table II.

e UCT-RIP: Same as the above, but based on UCT.

We also included unmodified UCT for the sake of compar-
ison. The global tournament results are reported in Table III,
and the results by map-size are shown in Figure 3. The score
is calculated similarly to the previous experiment.

The results demonstrate how IPA pruning positively affects
the playing strength of UCT and NaiveMCTS. Looking at the
average scores, NMCTS-RIP achieved a 12.8 points increase
with respect to NaiveMCTS, and UCT-RIP achieved a near 20
points increase, relative to UCT. IPA pruning in UCT (UCT-
RIP) managed to shrink the performance gap between UCT
and NaiveMCTS from 30 points to 10.1 points, noticeable in



TABLE IV
BRANCHING FACTOR, SAMPLED ACTIONS AND IPA PRUNING STATISTICS

Acent M Avg. Branching Avg. Unit | Avg. Unit-Actions, Avg. Branching Avg. IPAs % in Pruned IPAs %
en aj
g P Factor, b (Incl IPAs) Count, n m (Incl Wait) Factor, b’ (w/o TPAs) Sampled Actions | Sampled Actions | (WRT Sampled Actions)
8 x 8 1782 5.19 3.15 54 70.81 33.82% 6.04%
NMCTS-RIP | 12 x 12 2.48 x 107 14.39 2.67 1561 75.27 71.81% 14.32%
16 x 16 9.519 x 10! 20.92 3.11 6.12 x 106 71.25 76.72% 24.56%
8% 8 784 5.32 2.71 17 71.76 80.03% 0%
NaiveMCTS | 12 x 12 6.51 x 106 14.39 2.54 494 80.11 99.24% 0%
16 x 16 1.842 x 1011 20.06 3.05 1.87 x 106 76.85 99.88% 0%
Figure 3 where UCT-RIP’s performance closely matches that TABLE V

of NaiveMCTS in the 8 x 8 map. Moreover, NMCTS-RIP was
able to score a higher average than POLightRush, one of the
strongest scripts usually outranking NaiveMCTS. Against each
agent, both NMCTS-RIP and UCT-RIP obtained significantly
higher scores than those of NaiveMCTS and UCT respectively.

As expected, scripts and script-based approaches exhibit
a superior performance versus low-level MCTS search ap-
proaches, due to the presence of expert knowledge in the form
of hard-coded scripts. Expert knowledge helps in avoiding
detrimental player-actions by focusing the search on a limited
set of player-actions judged more rewarding. However, this
comes at the cost of lower decision granularity and higher
exploitation risk. By pruning detrimental player-actions, we
hope to focus the search on a wider range of interesting player-
actions and keep a higher degree of decision granularity. The
fact that NMCTS-RIP could achieve a higher average score
than MixedBot in the 12 x 12 map signifies that our approach
could be promising.

Under the yRTS competition settings, both holistic MCTS
agents and those that rely on MCTS only for low-level tactical
planning, e.g., [3] and [16], would benefit from IPA pruning
and see a tactical performance gain that positively impacts
their overall performance. Furthermore,

D. Branching Factor & Scalability

To better grasp how IPA pruning affects MCTS perfor-
mance, we took 100 mid-game states from matches between
NMCTS-RIP and NaiveMCTS and ran a 100ms search, start-
ing from those states for both agents. The search was limited
to one ply (maxDepth = 1), and the mid-game was defined
at 400, 600 and 1000 game cycles for each map of size 8 x §,
12x12 and 16 x 16, respectively. The statistics collected during
these searches are reported in Table IV.

We can see that the branching factor b in mid-game states
is higher in NMCTS-RIP, as a result of the similarly higher
unit-actions average m. This, in turn, is the consequence of
the units being spread out on the map due to lesser IPAs (more
movements), leading to more space between units, and more
possible actions for each. NMCTS-RIP samples player-actions
from a subset of the decision space having a lower bound
branching factor b, expanded by the number of IPAs involving
trapped units, and a random set of IPAs allowed by the pruning
approach.

NMCTS-RIP-F(0) RESULTS IN LARGER MAPS

’ Wins ‘ Losses ‘ Draws ‘ Score

52 6 42 73
43 1 56 71

24 x 24
32 x 32

The rate of IPAs in both branching factor and sampled ac-
tions grows proportionally to the branching factor, as expected.
The rate of IPAs in sampled actions is significantly high in
NaiveMCTS, reaching near 100% in larger maps. Whereas
in NMCTS-RIP, this rate drops under 34% and would not
go beyond 77% in the tested maps. Moreover, the rate of
pruned IPAs increases proportionally with the branching factor.
Therefore, we may conclude that in larger maps NaiveMCTS
gets fully overwhelmed by IPAs, while NMCTS-RIP prunes
more IPAs and focuses on a larger number of possibly better
player-actions. This further highlights the detrimental effect of
the overabundance of IPAs.

We have run 100 matches (switching sides after 50 matches)
between NMCTS-RIP-F(0) and NaiveMCTS in larger 24 x 24
and 32 x 32 maps, to test the performance scalability of TPA
pruning in larger scenarios. The results in Table V suggest a
stable score trend and an increasing win/loss ratio proportional
to the map’s size. Further experiments in these scenarios are
planned in the context of our next works.

VI. CONCLUSIONS AND FUTURE WORK

Throughout this paper, we have studied the possibility of
employing move pruning as a way to enhance MCTS perfor-
mance in the context of RTS games. We have identified a class
of player-actions that can negatively impact the performance
of low-level MCTS approaches. We labeled those actions
as Inactive Player-Actions (IPAs) due to their tendency to
keep at least one unit in an inactive state. Several pruning
approaches were conceived to prune IPAs, taking into account
the existence of possibly useful IPAs. We then carried out a
range of experiments to test the validity of our approaches
and discussed the obtained results. According to the results,
pruning IPAs is associated with a meaningful performance
gain, due to the reduced branching factor and the increased
focus on more interesting player-actions. IPA pruning in
NaiveMCTS has demonstrated an impressive performance
across increasingly larger maps, especially when all excessive
IPAs get pruned. Therefore, we conclude that NaiveMCTS can



safely ignore all superfluous IPAs in such situations, which
will grant a risk-free performance boost in an RTS game.

Move pruning in this context can be seen as “inverse” action
abstraction, since we are trying to find the set of player-
actions to avoid, whereas, action abstraction methods seek to
find the set of player-actions to focus on exclusively. Pruning
low-quality player-actions could result in a more flexible and
granular decision space, rather than the coarser space induced
by action abstractions (scripts).

uRTS agents integrating a low-level search technique with
IPA pruning could gain an improved tactical reasoning abil-
ity. This improvement would positively influence the agent’s
performance in the yRTS competition.

Researching more prunable player-action types falls into the
scope of our next work, along with further analysis of IPA
pruning in larger scenarios, and the analysis of the impact
of IPA pruning in multi-level search approaches such as STT
[3] and A3N [16]. We believe that further research into the
low-level structure of the RTS decision space could lead to a
deeper understanding of the general features of higher-quality
decisions.
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