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Abstract—Traditional image-to-image translation methods ef-
fectively change the style; however, these methods have several
limitations in shape changing. Particularly, current image-to-
image translation technology is not effective for changing a
real-world face image to the face of a virtual character. To
solve this problem, we propose a novel unsupervised image-to-
image translation method that is specialized in facial changes
accompanied by radical shape changes. We apply two feature loss
functions specialized for faces in an image-to-image translation
technique based on the generative adversarial network frame-
work. The experimental results show that the proposed method
is superior to other recent image-to-image algorithms in case of
face deformations.

Index Terms—Image-to-image Translation, Generative Adver-
sarial Network, Game-Character Generation

I. INTRODUCTION

Recent development in image-to-image translation tech-
nology has provided users with a variety of content that
had not been experienced before. In particular, the practi-
cal application of face transformation techniques has been
successful [Snapchat (2020)] and this success has created a
market for mobile applications that can stylize user-provided
images on demand [Timestamp (2020)]. With the expansion of
the market for content such as games, movies, and cartoons,
the inclination towards the transformation of faces for virtual
characters is increasing. Recent advances in deep learning
technology have garnered considerable interest in this field.
In particular, the unsupervised cyclic-consistent generative
adversarial network (CycleGAN) algorithm [Zhu et al. (2017)]
has generated various derivation studies owing to the ease of
data collection and processing [Almahairi et al. (2017)] [Lu
et al. (2017)]. These image-to-image translation techniques
have also been applied to the field of content creation, and
have successfully been utilized in manga generation [Su et
al. (2020)] and image colorization [Furusawa et al. (2017)].
However, the challenge of converting an in-wild face image
into a virtual character has not been addressed properly with
existing image-to-image translation technology. Till date, the
techniques have been well-studied in terms of styles such as
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colors or regional patterns of the target domain, but have
shown limitations in shape learning. In this study, we propose a
technique that changes a real-world face image to another face
domain (game character, cartoon, etc.) with radical deforma-
tion. We newly design two loss values to handle the radical
facial changes, which are motivated by [Shi et al. (2019)],
and attention map and adaptive layer-instance normalization
(AdaLIN) [Kim et al. (2019)]. Further, we design the network
structure by integrating two feature parsing networks generated
into the generative adversarial network (GAN) framework.

II. METHOD

A. Generator

Our generator model is specialized for faces and constructed
to learn and generate global and local facial features. For
the baseline network in our generator, we used a network
configuration similar to that of the unsupervised generative
attentional networks with AdaLIN for image-to-image trans-
lation (UGATIT) [Kim et al. (2019)]. The UGATIT model
features an auxiliary classifier and AdaLIN; these two features
of the UGATIT network have a significant advantage in
shape modification, compared with existing image-to-image
models. The aim of the proposed method is to develop a
network specialized in shape transformation in face images.
The features of a face are considerably important, compared
with other image transform domains. If proper learning is not
applied, particularly to the positions of the eyes, nose, and
mouth, a large error occurs in the cognitive aspects, regardless
of how well the other areas are learned. Therefore, stable
shape changes are necessary when face-specific information
is used by the network. To achieve this, we incorporated two
additional facial details: face segmentation and face feature.
These details were obtained from two pre-learned networks,
and they generated two losses for the CycleGAN training.

The proposed network architecture is shown in Fig. 1. Let
xs ∈ Xs and xt ∈ Xt represent samples from the source
and target domains, respectively. Let G1(xs) and G2(xt) rep-
resent the translated source and target domains, respectively.
Our model consists of two generators (G1(xs) and G2(xt)),
two discriminators (D1(G1(xs)) and D2(G2(xt))), and two
feature extractors (F1(xs, xt) and F2(xs, xt)). G1(xs) creates
an image that fits the target style based on the GAN framework
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Fig. 1. Proposed network architecture. Blue line indicates the flow of
information of source image xs. Red line represents the flow of information
of target image xt.

and G2(xt) is used for cycle consistency. The discriminators
D1 and D2 distinguish between the real and fake translated
images. The feature extractors F1 and F2 provide two loss
values to the CycleGAN framework to facilitate shape trans-
formation. The final loss function of our model can be written
as a loss of Ltotal.

argmin
G1,G2

max
D1,D2

Ltotal

(
G1, G2, D1, D2, F1, F2) (1)

Ltotal consists of five loss terms: Llsgan, Lcycle, Lidentity ,
Lcam, and Lface. The adversarial loss Llsgan is employed to
match the distribution of the translated images to the target
image distribution. The cycle loss Lcycle is applied for a
cycle consistency constraint to the generator. The identity loss
Lidentity is used to ensure that the color distributions of the
input and output images are similar. These three losses are
calculated using G1, G2, D1, and D2 with the traditional
GAN framework. These terms are described in detail in
[Zhu et al. (2017)] and [Kim et al. (2019)]. Lcam uses the
information from the auxiliary classifiers to determine the
differences between two domains [Selvaraju et al. (2019)]. The
additional face-feature loss Lface is the weighted summation
of the segmentation loss Lseg and feature loss Lfeature. These
two losses are calculated using the segmentation and feature
parsing networks.

Ltotal = Llsgan(G1, G2, D1, D2) + Lcycle(G1, G2, D1, D2)
+Lidentity(G1, G2, D1, D2) + Lcam(G1, G2, D1, D2)
+Lface(F1, F2, G1, G2)

(2)

Lface(F1, F2) = αLseg(F1, G1, G2)
+βLfeature(F2, G1, G2)

(3)

B. Segmentation Parsing Network
To specialize image-to-image translation on the face, we

used the Lface loss. The purpose of the Lface loss is to

calculate the difference between facial features in the image
generated by GAN and the target xt image on the GAN
framework, and use it for the backpropagation of G1,2. To
achieve this, we used the Siamese networks [Bertinetto et al.
(2016)] for F1 and F2. The Siamese network is composed of
two convolutional neural networks (CNNs) sharing weights.
The CNN converted two images i1 and i2 into vector represen-
tations of F (i1) and F (i2). To learn F , weights were trained
in the direction of defining a loss function and creating a
representation for distance. Using the face-segmentation image
as an input image to the Siamese network, we considered this
loss as a constraint on the shape and displacement of different
face components in the two images, such as the eyes, mouth,
and nose. Instead of using pre-trained models, we developed
our facial segmentation model based on the VGG [Simonyan
et al. (2014)], where we removed the fully connected layers.
We trained this model on the semantic segmentation dataset
from CelebAMask-HQ dataset [Lee et al. (2019)].

Generally, image segmentation generated in the early stage
of GAN learning does not show a normal face shape; therefore,
normal segmentation cannot be achieved. Because of this, it
is impossible to calculate Lface until the eyes, nose, and
mouth are constructed during training. However, as the overall
learning rate is largely set during the early stage of learning
and the size is reduced during the second half of learning,
important face information cannot be reflected during the
early stage of learning by Lface. To solve this problem, we
added the static segmentation loss term at the beginning of
learning. This term is calculated as the difference between the
segmentation loss generated by inputting the source image xs
and target image xt. The purpose of this term is to suggest the
learning direction at the beginning of learning. The effect of
this term is designed to continue until the segmentation loss
generated by G1 becomes less than a certain value as learning
progresses, and then decrease linearly. The Lface loss function
of the abovementioned process is defined as follows.

Lseg(xs, xt) = αdecay‖F1((G1(xs)))− F2((G2(xt)))‖1
+βdecay‖F1(xs)− F2(xt)‖1

(4)
In this formula, the first term is the run-time segmentation

loss calculated during the learning phase and the second term
is the static segmentation loss affecting the initial learning.

C. Feature Parsing Network

The objective of this study is to change the face images
of people in the real world into character faces in the virtual
world. The segmentation loss provides essential information
for changing faces; however, some cartoons and game char-
acters have various accessories (glasses, tattoos, ornaments,
hats, beards etc.) that are different from the real-world faces.
Consequently, there is a possibility that segmentation may not
be performed correctly. To solve this problem, we used another
Siamese network. The network was designed to generate a
universal feature vector of the face. We used the pre-trained
light-CNN face recognition model [Wu et al. (2018)] to extract



256-dimension facial embeddings of the two facial images
and then compute the cosine distance between them as their
similarity. This face recognition network was learned in a
noisy label environment, and had the advantage of extracting
a stable feature vector for images that had not been previously
learned. It complements the weaknesses of the segmentation
parsing network. If the target image type was considerably
different from the normal image such that normal segmentation
was impossible, the reflection weight of this network was
increased. Lfeature consists of calculating cosine similarity
as follows.

Lfeature(xs, xt) = 1− cos(F1(G1(xs)), F2(G2(xt)))
(5)

Unlike the segmentation loss, the initial static term is not
used in this expression.

D. Discriminator

In this study, D1,2 had a structure similar to G1,2. However,
because the image decoder module was unnecessary for D,
only the encoder and auxiliary network parts were used, except
for the residual network in G. A classifier that determines
whether an image is real or fake was added and used instead
of the decoder.

III. EXPERIMENTAL RESULTS

For the source images, 20,000 images were randomly ex-
tracted from the CelebA data set. For the target images, we cre-
ated a new game-character dataset. We developed a crawler in
the web environment to collect the faces of characters created
by customizing in the commercial MMORPG Black Desert
[Black Desert (2014)]. These face images from the game
were presumed to be suitable for testing in this experiment
because of the latest character-face customization system and
the ability to generate various face data. The total number
of Black Desert face data collected was 20,000. The aim of
our experiment was to compare the image-to-image translation
of the CelebA dataset with that of the Black Desert dataset.
These images showed various accessories, skin colors, and
skin customization that would be difficult to observe in the real
world, making the application of image-to-image translation
techniques challenging.

All the images were resized to 112x112 pixels for training.
For optimization, we set the maximum number of iterations
as 100,000, learning rate as 0.001, and decay rate as 20% per
5 iterations. A stochastic gradient descent optimizer, with a
batch size of eight, was used for training. The NVIDIA RTX
Titan GPU required approximately two days for the training.
The face alignment was performed using dlib library [Dlib
(2020)] to align the input image before it was fed into the
network.

First, we evaluated the quality of the proposed network.
We compared our method with various models including
CycleGAN [Zhu et al. (2017)], UNIT [Liu et al. (2017)],
and UGATIT [Kim et al. (2019)]. All the baseline methods
were implemented using the authors’ code. Fig. 2 shows the

comparison results. From the figure, we can observe that our
result exhibits a more detailed expression of the eyes, nose, and
mouth of the face compared with the face images generated
by the other networks.

According to the obtained images, CycleGAN and UNIT
attempted to mimic the entire face shape, but were unable
to express specific details. Additionally, these models could
not respond to the angle changes. UGATIT responded to the
changes in facial expressions and angles to some extent, but
did not accurately express them. Our model expressed the
details of the face, and showed the shapes corresponding to the
various face angles. The facial details and ability to respond
to angle changes were observed as a result of the two losses
proposed in this study, thereby verifying that the proposed
method is effective.

Fig. 2. Comparison between the generated faces: (a) source images; (b)
CycleGAN; (c) UNIT; (d) UGATIT; (e) proposed method.

We determined the effect of the two additional losses. Fig.
3 shows the resulting images when applying each loss. The
leftmost panel shows the results when the three losses (Llsgan

+ Lcycle + Lidentity) are used. Although it is possible to
produce a result similar to the target images, it can be observed
that detailed features such as the eyes, nose, and mouth are
not well revealed. When feature loss is added, as shown in
the images in the middle panel, it can be observed that the
eyes, nose, and mouth are expressed more clearly, and color is
also learned. The rightmost panel shows the results of adding
the segmentation loss; all the feature details are accurately
represented. Comparing the two losses, we can observe that
the segmentation loss has a more substantial influence than
the feature loss.

To quantitatively evaluate the similarity between the gener-
ated and in-wild face images, we used the Frechet inception
distance (FID) [Heusel et al. (2017)] as our metrics. For each
test image, we randomly selected an image from the generator
training set as its reference and computed the average FID over



Fig. 3. Comparison with losses : (a) basic losses (Llsgan + Lcycle + Lidentity); (b) basic losses + feature Lfeature; (c) basic losses + feature Lfeature

+ segmentation Lseg .

the entire test set. The FID score of our proposed model was
44.14. This score was approximately 11.36% lower than the
FID score of the UGATIT network measured using the same
method. This shows that the proposed model is more similar
to ground truth, and produces a variety of results.

IV. CONCLUSIONS

In this study, we introduced an image-to-image translation
technique between source and target images. The effectiveness
of the technique was evaluated using two face-specific losses.
The proposed method showed an advantage in face generation
because of its unsupervised application without any additional
data labeling. In particular, because it is possible to create
an image similar to the target face image without separate
face-related parameter data, it may be helpful for external
researchers or users to create the desired image of specific
content domain.
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