
Competitive Balance in Team Sports Games
Sofia Maria Nikolakaki†

Computer Science Department
Boston University, Boston, MA, USA

smnikol@bu.edu

Ogheneovo Dibie, Ahmad Beirami, Nicholas Peterson,
Navid Aghdaie, Kazi Zaman

EA Digital Platform – Data & AI
Electronic Arts, Redwood City, CA, USA

Abstract—Competition is a primary driver of player satisfac-
tion and engagement in multiplayer online games. Traditional
matchmaking systems aim at creating matches involving teams
of similar aggregated individual skill levels, such as Elo score
or TrueSkill. However, team dynamics cannot be solely captured
using such linear predictors. Recently, it has been shown that
nonlinear predictors that target to learn probability of winning as
a function of player and team features significantly outperforms
these linear skill-based methods. In this paper, we show that using
final score difference provides yet a better prediction metric for
competitive balance. We also show that a linear model trained on
a carefully selected set of team and individual features achieves
almost the performance of the more powerful neural network
model while offering two orders of magnitude inference speed
improvement. This shows significant promise for implementation
in online matchmaking systems.

Index Terms—matchmaking, game balancing, massively online
multiplayer game, competitive balance, machine learning.

I. INTRODUCTION

Video games are now a ubiquitous part of life; it is estimated
that there will be over 2.47 billion video gamers worldwide by
the end of 2019, according to Statista [1]. Furthermore, there
has been a big shift toward online gameplay, as the majority
of games offer online match capabilities [2]. At the forefront
of the online experience of video gamers is matchmaking, the
process of grouping players or teams into matches. It follows
a “goldilocks” principle, as research indicates that matches
that are neither too difficult nor too easy are key to player
stimulation and engagement [8], [11]. Competitive balance is
particularly important in team games as it is influenced by
both intra- and inter-team dynamics. A competitively balanced
match, formally defined in Section III, is one where the
distribution of successful scoring events among teams is close
[7]. For example, a soccer match that ends 2-1 is more
balanced compared to one that ends 5-0.

The traditional approach for creating competitively balanced
matches is to create teams of players with similar aggregate
skill ratings. A skill rating is usually a single numeric value
derived from a player’s prior match history. In team games,
a team’s skill is an aggregate of the skill ratings of all its
players such as the mean/median. Popular skill rating systems
today include Elo [3], Glicko [4], and Trueskill [5]. Although
the simplicity of skill-based matchmaking makes it a very
attractive choice, multiple studies [11], [13] including the

†The work of SMN was done in part during an internship at EA.

research presented in this paper show that this simplicity fails
to capture important in-game dynamics that impact match
balance.

In team sports games, teams are comprised of players who
play in different roles such as offense, defense, goalkeeper,
etc. A single skill rating value indicates a player’s overall
proficiency and gives no information about expertise in spe-
cific roles required for a team. Thus, a team whose players’
expertise match the roles they play in will likely dominate an
opposing team with little match between player expertise and
roles even if both teams have similar skill ratings [11], [14].
Considering another example, imagine a team game where
each team has a player in the forward, midfield and defense
role. A team with players whose expertise match the specific
role they play in i.e. forward, midfield or defense will likely
outperform an opposing team where all players have expertise
only in the forward role despite both sets of players having
equivalent skill ratings. Therefore, it is not sufficient to use a
single skill value to capture the team dynamics in team games.

In this work our contributions are summarized as follows:

• We provide a new definition of competitive balance for
team games, where a match is competitively balanced if
the final score difference is concentrated close to zero.
Our experiments show that using the proposed definition
can lead to ∼15% and ∼2% improved performance
over previous definitions in linear models and non-linear
models, respectively.

• We explain and provide insight to a variety of player,
team and match features in team sports games. We
design several models to predict competitive balance and
demonstrate the definition’s utility in a team sports game
published by Electronic Arts (EA). Our experiments show
that using the proposed features can lead up to ∼16% and
up to ∼5% prediction performance improvement in linear
models and non-linear models, respectively.

• We demonstrate that using our definition of game balance
with the proposed set of features can lead to great
computational savings with small predictive performance
loss. In particular, the proposed linear model achieves up
to ∼100x computational advantages, particularly at in-
ference times, with less than ∼2% sacrifice in prediction
performance compared to non-linear models.

II. RELATED WORK
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Player, team, and match features for matchmaking: While
traditional matchmaking systems deal with the creation of 1
player versus 1 player (1v1) matches, the popularity of team
games has necessitated the need for systems that can create
and match teams. These systems are typically team extensions
of existing 1v1 skill-based systems, such as Elo [3], Glicko
[4] and Microsoft’s TrueSkill [5]. For example, a team’s skill
might be represented by the mean Elo score of all its players.

A major drawback of these approaches is that they repre-
sent a team by a single scalar value—its skill rating. This
value, however, does not capture the complex dynamics of
competitive team games, such as the distribution of roles in
a team, player play style, team characteristics, etc. Recent
research has sought to address the drawbacks of considering
only skill ratings for team games by modeling team dynamics.
Some researchers [9], [10] have taken advantage of how player
skill ratings vary over different roles in a game to create
player feature sets comprising role-specific skill levels. More
recent research [14], [17] has explored the enrichment of
player feature sets with play styles (playing behavior of players
during a game). For instance, Wang et al. [14] experimentally
show on the multiplayer online battle arena (MOBA) game
League of Legends that teams with a mix of both aggressive
and defensive players are more competitive than teams of
players of a single style.

The main issue with these approaches is their focus on cre-
ating player-specific features, and using these features to create
balanced teams. Teams, especially as they become larger, are
a lot more complex entities than the sum of their individual
members. A simple aggregation of the player features does not
sufficiently capture match dynamics, such as individual duels
between forwards and defenders, or rogue team members, that
impact the players’ enjoyment. Our work focuses on both,
creating richer player feature sets, and considering features
that capture team dynamics which aren’t necessarily tied to a
player’s characteristics.

In this regard, the team profiling approach of Delalleau
et al. [11] is closely related to our work. However, in that
work the authors define a balanced match to be one where
the probability of a team to win is close to 50%. Our work
extends the work presented by Delalleau et al. [11] as follows;
the authors raise the importance of having richer player feature
sets, an issue that we address in this paper by considering
generic attributes during the creation of player, team and
match-specific features.
Match balance: Balanced matches are a strong indicator of
matching opposing teams of similar strength and are more
prone to lead to player enjoyment. However, a clear and
concise definition of match balance is challenging [18].

The majority of realized matchmaking systems use the
average team skill ratings to create matches and assumes that
a match is balanced when the opposing teams have close
average skill ratings [6], [8]. The accuracy of this approach
has been challenged by Claypool et al. [13], who surveyed
players participating in skill-based matches and discovered that
a majority of these players did not feel that the matches they

were involved in were balanced. They conclude by stating
that player skill ratings are at best useful for ranking players
as opposed to creating matches based on them [13].

Towards improving the skill rating-based definition of bal-
ance, a line of research [11], [15], [16], [18] suggests that
balance exists when the probability of winning is close to 50%.
The recent works of Chen and Joachims [15], [16] extend the
conventional Bradley-Terry model for the prediction of the
winner in kvk matches using multi-dimensional representa-
tions of the players. Their experiments show that the proposed
model outperforms not only the Bradley-Terry model, but also
a variety of baselines. Delalleau et al. [11] extend this notion to
team games and propose a neural network model to predict the
probability of winning. Even though such probabilistic models
allocate more space and time resources than the simple, but
widely used skill-based approach, researchers have began
shifting towards this new notion of balance, which is also
used for matchmaking in a variety of games [25]. Contrary
to our setting, all of the aforementioned works approach the
generation of matches assessing both probability of winning
and player satisfaction.

III. PROBLEM DEFINITION & NOTATIONS

Throughout the discussion we consider a set of k players
P = {Pj ; j = 1, . . . , k}, two opposing teams denoted as T1
and T2 with team feature sets t1 and t2 respectively, and a
match M .

We use real-valued vectors to describe the i) player, ii)
team and iii) match feature sets. In this setting, every player
is described by their corresponding feature set, so we use
notation Pj to represent the player feature set of player j.
Furthermore, each team Tj∈{1,2} is described by its feature
set tj∈{1,2}, respectively. A match occurring between two
opposing teams is described by its feature set M , defined by
the combination of the feature sets of the opposing teams
(t1 and t2), along with match-specific features (m), i.e.,
M = (t1, t2,m).

The goal of this paper is to predict competitive balance in
team online games. A match M between teams T1 and T2
is competitive balanced, if the difference between the number
of successful scoring events achieved by T1 with that of T2
approaches zero [19]–[21]. Note that for the general case, a
scoring event can be defined broadly and can be a different
thing based on the game genre. For instance, scoring events
during a match in FPS and MOBA games can be indicators
of the team with more kills, with the most bases captured, or
with the most men standing.

IV. METHOD

Our model architecture used for predicting match competi-
tive balance comprises three main phases; (i) the extraction of
player features, (ii) the aggregation of these features to form
team and match level features, (iii) and the predictor for a
balance match. Note that the presented architecture is a sophis-
ticated extension of the one presented in [11]. However, our
main contribution is in motivating and optimizing the correct



metric for competitive balance, and in designing a model with
high running time performance using an appropriate set of
features, rather than designing a powerful model architecture.

A. Data

The analysis presented in this paper is based on data from
two team game modes, namely the 3 players versus 3 players
(3v3) and the 6 players versus 6 players (6v6) game modes,
of an online team sports game published by Electronic Arts,
Inc. (EA). Both datasets comprise more than 100,000 players
and more than 500,000 games, and the balanced samples are
generally in similar order to unbalanced samples. All models
are trained and evaluated on subsets of the same 3-month data
period.

B. Feature construction

The conversion of raw attributes to meaningful features
used for the prediction of competitive balanced matches occurs
during the feature construction phase.

Player features: The set of features that corresponds to player
j, i.e., Pj is constructed from a player’s in-game attributes as
described in the game logs. These features are classified into
four broad categories as shown in Table I; i) match experience,
ii) role experience, iii) play style, iv) dropout history.

The match experience category captures general player
participation and influence in matches, such as the number of
matches a player has played, and the fraction of matches the
player has won. The role experience category captures player
experience in specific roles. Roles can be either explicitly
defined by the game, e.g., forward, defense, etc. or they
can be inferred from a player’s play style, e.g. a player
who saves many scoring attempts may be categorized as
an “defender”. Regardless of the role type, maintaining the
frequency of a player’s involvement with a specific role is
a strong indicator of the player’s play style. As discussed
in Section II, this insight can be helpful in the creation
of balanced teams/matches. The play style category covers
all actions performed by a player. It differs from the role
experience class in that we record statistics about different
actions instead of roles. Actions generally reflect all micro-
level in-game events during a match. These include scoring
attempts, giveaways, hits, takeaways, etc. Finally, we consider
the dropout history category. An essential aspect that leads
to competitive balanced matches is ensuring a priori that the
number of players in each team will remain close throughout
the whole match. Matches invariably end up unbalanced when
players from a particular team quit early.

The player features for all categories described are cu-
mulative and updated in an online fashion as matches are
completed. This renders player feature sets time-dependent.
It also enables our model to account for recent player activity
in making predictions on match competitive balance.

Team features: Team features are based on aggregating
individual player statistics. Given a team, we compute the
average value and the standard deviation of its players for

each of the player features described in Table I to create the
corresponding team features.

Match features: A match is a complex entity whose perfor-
mance is determined by both inter- and intra-teams dynamics.
A match feature set that is only based on aggregating indi-
vidual player statistics lacks insight on significant aspects of a
match that impact competitive balance such as team properties
and duels between members of opposing teams. Here, the
match feature set contains the team features of the opposing
teams with additional match-specific features.

First, we use the team features of the opposing teams to
create the following feature categories: i) the absolute differ-
ence of each of the average player feature values of the two
teams (non-negative value), ii) the difference of the average
player feature values of the two teams (can be negative). The
first category aims to capture potential superiority of one team
over the other that could lead to an unbalanced match. For
instance, a team comprising players that have scored many
goals in past matches could dominate a team with players that
have been less successful at it. Such phenomena are captured
using the difference of the team members’ average feature
values. Now even though the absolute value itself demonstrates
the existence of a superior team, it does not tell which team
that is, which requires the second category of features (signed
difference). These categories provide us with insight into the
similarity and differences in team ability. For example, a
match with a large difference in the average attempts of goals
between the two teams will probably be more unbalanced.

Furthermore, we consider features that are based on player
information that is available at the time of matchmaking. These
include the skill ratings of players, their allocated roles in the
game and the team sizes. We compute various transformations
of these features to capture insights on the match composition.
First, as is done in skill-based matchmaking systems, we
compute the skill rating of each team by averaging the skill
ratings of its players. We then compute the difference and
absolute skill difference between the two teams. Other features
we compute include the skill difference of the players with the
highest skill ratings in each team, the skill difference of the
players with the lowest skill ratings in each team as well as
the standard deviation of the skill ratings in each team. These
features showcase if there is a stronger or weaker link within
any team that could affect the overall performance, or if one
team has a much larger range of skill ratings compared to the
other team.

Finally, due to the importance of creating matches fast,
many matchmaking systems create teams of different sizes.
This leads to the last set of match features, namely the number
of human players in each team. In particular, games usually
position game bots (short for robots) in roles where human
players are missing. However, the extent to which these can
mimic how a human would play the game is rather limited,
and they either result in dominating the game, or significantly
under-performing. Therefore, having opposing teams with a
similar number of human players is an important indicator of



Pj Feature Category Description
num matches Match Experience Number of matches a player has participated in.
num wins Match Experience Number of wins a player has had.
freq wins Match Experience Ratio of wins to the number of total matches

of a player has participated in.
num role i Role Experience Number of times a player has played a specific role i.
freq role i Role Experience Ratio of times that a player played a specific role i
num action i Play style Number of times a player has performed a specific action i.
avg num action i Play style On average, how many times a player performs

a specific action i in a match.
num dropout Dropout History Number of times a player has dropped out from a game.
freq dropout Dropout History Ratio of times a player dropped out from a game.

TABLE I: A summary of a player feature set Pj .

match balance.
We stress that the described set of features implicitly models

synergy among players with different role preferences and
playstyles because the corresponding features are the input
to a neural network-based model that captures the non-linear
dependencies between player features. We do not present all of
the match features due to restricted space; however, in Section
V, we do provide the most significant features impacting
competitive balance.
Feature pre-processing: Finally, all features are standardized
following z-score normalization [26]. In total, we propose
approximately 100 features for the 3v3 and 6v6 game modes,
respectively. This number depends on the available set of roles
and actions in a game.

C. Prediction model
This section presents two categories of predictions models

used for determining balanced matches.
Probability of winning prediction model (Delalleau et
al. [11]): The probability of winning prediction model, pro-
posed by Delalleau et al. [11], trains a soft classifier that
predicts the probability that either team wins given player,
team, and match features. In this case, a match is considered
to be balanced if the probability of winning is about 0.5 for
either team.
Competitive balance prediction model (this work): This
work proposes using the definition of competitive balance
to determine balanced matches. In particular, the predictor
is tasked with regressing the final score difference between
the two teams on the match features. The smaller the dif-
ference, the more competitive balanced the match is. This
score difference value is used to determine match balance
via a threshold function. We motivate the effectiveness of the
aforementioned definition in Section V-C, and compare the
results with the probability of winning prediction model. We
refer to this model as NN and its succession is as follows:
1) The player feature sets Pj containing the latest features of
each player are retrieved from the database.
2) For each team Tj∈{1,2} the corresponding team features
tj∈{1,2} are created.
3) The match feature set M combines into a single vector
the individual features of each opposing team, along with the
additional match-specific features: M = (t1, t2,m).

4) Match features are summarized by a predictor. We compare
a linear and a two-layer neural network predictor similar to
the one in [11] with fully connected layers followed by the
Rectified Linear Unit (ReLU) activation.

5) The output layer of the previous step returns a single,
continuous value r representing the final score difference
prediction. Depending on the application, it might be useful
to convert the real value into a binary label, denoting whether
the match will be balanced or not. For this purpose, we use
function f : R→ {0, 1} defined by, f(r) = I|r|<θ(r), where I
denotes the indicator function, r is the signed score difference,
θ is a threshold hyperparameter for measuring competitive
balance, and where 0 and 1 represent an unbalanced and
balanced match, respectively.

Selecting threshold hyperparameter θ: In some team sports
games if one party leaves the match before it ends then they
forfeit. In sports the forfeiting team loses with a predefined
score difference, e.g., for soccer and hockey the match ends
with 3-0, basketball 25-0, e.t.c. This means that in sports θ
can be clearly defined as the score difference after a forfeit (a
forfeited match can be considered unbalanced). Alternatively,
θ could be treated as a hyperparameter that could be tuned for
optimizing player engagement and retention.

Training and validating the prediction models: The time
sensitive nature of our data make them unnameable to a
traditional data shuffling and K-fold cross validation proce-
dure. Furthermore, recent matches are stronger predictors of
competitive balance in upcoming matches than older matches
are. Therefore, we perform training, validation, and testing
as follows. Assume a total of matches that occurred within K
days that are used for the model’s evaluation and hyperparame-
ter tuning. We use the first K−3 days for training, the matches
that occurred during days K−2 and K−1 for validation and
the matches of day K for testing. These base sets allow us
to design and evaluate our model in an offline way, before
deploying it into the matchmaking system. Now, we assume
that there is a stream of incoming matches arriving at day
K+1. We shift the first K days by one, such that the training
set contains data from the first K − 2 days, the validation set
includes the next K − 1 and K days, and the most recent
chunk K + 1 is used for testing. This procedure continues,
and allows the system to continuously update the model using



a larger training set, and selecting the most recent validation
and testing parameters that capture current tendencies.

D. Competitively balance-based matchmaking

In this section, we presented an architecture for predicting
competitive balance to improve matchmaking. We emphasize
that the results presented in this paper are based on existing
player data, but none of the approaches have been deployed to
a live matchmaking service. That said, here we describe how
the proposed model can be deployed to a live matchmaking
system. We assume a matchmaking system similar to the
ones presented by Delalleau et al. [11] and Zook et al. [25].
Briefly, players enter a queue and the matchmaking system
assembles teams using a sampling strategy, calculates the
match quality, and either reassembles the teams if the quality
is low, or launches the match. In a similar matchmaking
system, the prediction model is integrated with the match
quality computation step, and is used as an additional quality
assessment addressing the competitive balance of a match.
Predicting whether a match is going to be balanced has low
computational overhead, while the prediction model itself can
be trained offline.

V. EXPERIMENTS

The purpose of this section is to explore the efficiency
of our model on real datasets. Specifically, i) we evaluate
and compare the performance of our prediction models to
a variety of baseline models, ii) we demonstrate that the
definition of competitive balance as a regression problem leads
to significant prediction performance improvements, iii) we
showcase that using the proposed definition of balance in
combination with the proposed features can lead to substantial
computational savings, iv) we discuss which features have the
most influence on competitive balance in team sports games.

For context on execution times, our experiments were
conducted using single process implementations on a 64-bit
MacBook Pro with an Intel Core i7 CPU at 2.6GHz and 16
GB RAM. All presented models are implemented in Python,
using the the scikit-learn [22] and Keras [23] libraries.

A. Baseline methods

We compare the performance of the model NN presented in
Section IV to a variety of baseline methods.
Dummy: Dummy is the most naive approach that we consider.
It always predicts the mean of the training set. Dummy
corresponds to a competitive balance prediction model.
AvgSkill: In the AvgSkill approach the match feature
set includes only two features , i.e., the two averages of the
skill ratings of the players in each team. These features are
used as the input to a linear regression model that predicts the
final score difference. Note that this baseline corresponds to
the currently used single-valued skill aggregation model and
corresponds to a competitive balance prediction model.
Linear: Linear is a linear regression model, where the
input match instances comprise all the features presented in
Table I. In addition to being a fundamental regression model

Model F1
3v3 6v6

Dummy 0.00 (±0.00) 0.61 (±0.01)
AvgSkill 0.00 (±0.00) 0.61 (±0.01)
Linear 0.59 (±0.26) 0.70 (±0.08)
RndFrst 0.57 (±0.17) 0.64 (±0.07)
NN 0.62 (±0.13) 0.73 (±0.08)
Linear+ 0.60 (±0.27) 0.73 (±0.12)
RndFrst+ 0.58 (±0.19) 0.65 (±0.12)
NN+ 0.64 (±0.10) 0.74 (±0.09)

TABLE II: Training-set performance of models when predict-
ing competitive balance.

that is known for its simplicity, linear regression provides
insight into the model covariates that explain the variance
in the response variable (final score difference). It provides
us insights into which explanatory variables are significant in
the match balance prediction task. Linear corresponds to a
competitive balance prediction model.

RndFrst: Random Forests construct a multitude of decision
trees at training time and output the mean prediction of
all trees. RndFrst corresponds to a competitive balance
prediction model.

Logistic: This is a logistic regression model that uses
a logistic function to model a binary dependent variable.
In particular, it models the probability of a certain class.
Logistic corresponds to a probability of winning prediction
model.

NNSoftmax: NNSoftmax is a model with the same neural
network architecture as NN with a single difference. We replace
the final layer with a softmax layer to assign a probability to
whether a match is balanced or not. NNSoftmax corresponds
to a probability of winning prediction model.

For each of the baseline methods we select the best feature
subset using the recursive feature elimination method and
a statistical feature analysis. Further details on significant
features are provided in Section V-E. All models with the sign
+ in their name use their corresponding best subset of features.
Note that we did not perform best subset feature selection for
Dummy and AvgSkill since the features of these models are
determined by their definitions.

B. Model Characteristics

To demonstrate the performances of our prediction models,
we use the F1 metric [24]. To support our claims we showcase
the results of the training model evaluation along with the
corresponding standard deviation in Table II. However, our
main focus is on the test-set performances of the models that
are presented in Table III.

F1 Score: This metric is the harmonic mean of the precision
and recall. The results of F1 are presented in Table III.
We present the mean and standard deviation of the models’
performances over 20 consecutive matches.

First, we compare the performances of the models when
all features of Section IV-B are used (rows 1-5) and when
the best subset of features is used (rows 6-8). We notice that



Model F1
3v3 6v6

Dummy 0.00 (±0.00) 0.60 (±0.01)
AvgSkill 0.00 (±0.00) 0.60 (±0.01)
Linear 0.53 (±0.02) 0.68 (±0.03)
RndFrst 0.56 (±0.02) 0.61 (±0.03)
NN 0.59 (±0.02) 0.68 (±0.02)
Linear+ 0.60 (±0.02) 0.68 (±0.02)
RndFrst+ 0.58 (±0.01) 0.64 (±0.03)
NN+ 0.62 (±0.02) 0.71 (±0.02)

TABLE III: Test-set performance of models when predicting
competitive balance. The results are averaged over 20 matches.

Model F1
3v3 6v6

Logistic 0.54 (±0.02) 0.56 (±0.03)
NNSoftmax 0.57 (±0.01) 0.59 (±0.02)
Logistic+ 0.55 (±0.01) 0.56 (±0.02)
NNSoftmax+ 0.55 (±0.01) 0.62 (±0.02)
Delalleau+ 0.59 (±0.01) 0.70 (±0.01)

TABLE IV: Test-set performance of models when predicting
probability of winning. The results are averaged over 20
matches.

there is improvement in the models’ performances when the
best features are used. For instance in the case of the Linear
and Linear+ the performance increases up to ∼4%. The
conclusion of this observation is two-fold; (i) selecting the best
subset of features boosts the models’ performances, (ii) the
feature engineering described in Section IV-B and the features
that we propose are overall very effective for the prediction
of balanced matches.

Now, we focus on the individual comparisons between the
different models. Note that NN+ achieves the best F1 perfor-
mance (row 8) in both the 3v3 and 6v6 datasets. An interesting
observation is that even though NN+ demonstrates the best
performance during testing, its performance is not significantly
higher than the performance presented by the much simpler
Linear+ model (at most 4% more). Overall, we see that the
performances of NN+, Linear+ and RndFrst+ are close.
Finally, for the 3v3 and 6v6 datasets we see that the F1 scores
of Dummy and AvgSkill are 0.00 and 0.61, respectively. The
Dummy model classifies all the matches as unbalanced, hence
the zero F1 score. In both cases however, the conclusion is
that simply using the average skill as a feature is not a good
predictor of match balance.

C. Why predict the score difference?

The purpose of this section is first to demonstrate the
effectiveness of using a competitive balance prediction model
as opposed to a probability of winning prediction model. The
differences of the aforementioned models are presented in
Section IV-C.

For this purpose, we define Logistic, Logistic+,
NNSoftmax and NNSoftmax+ all of which are probability
of winning prediction models and are trained to predict the
probability that a team will win. Logistic and Logistic+

use the same features as Linear and Linear+, respec-
tively, but perform logistic regression, while NNSoftmax and
NNSoftmax+ use the same features and neural network ar-
chitectures as NN and NN+, respectively, but with an additional
softmax layer that predicts the probability of winning.

Table IV demonstrates the performances of the probability
of winning models on the test set. Due to space limitations
and given that the performance differences are pronounced
we omit the corresponding results of the training set. We
compare the results of Table IV to the corresponding scores of
Table III where we consider the competitive balance prediction
models. Specifically, we focus on the comparison of the
following models; i) Linear with Logistic, ii) Linear+

with Logistic+, iii) NN with NNSoftmax, iv) NN+ with
NNSoftmax+. We see that using competitive balance models
leads to higher F1 scores compared to predicting the proba-
bility of winning. This is pronounced by the models’ corre-
sponding F1 scores which are overall much lower compared
to Table IV. The only exception is when comparing Linear
with Logistic where the latter performs slightly better.

Furthermore, we perform a comparison of our proposed
models with the probability of winning model proposed in
[11] denoted as Delalleau+ in row 5 of Table IV. In that
paper the authors present a neural network architecture with
the following task; given two teams A and B predict the
probability of team A to win over team B. Similar to the
final score difference, we define a threshold ω to compute
balanced and non-balanced matches from the probability of
winning. In particular, we consider the match to be balanced
if |Pr(team A wins over team B) − 1

2 | ≤ ω, otherwise the
match is not considered balanced. Furthermore, since [11]
addresses a different game and the authors do not provide
the exact feature and embedding descriptions, we use as
input features to corresponding best subset of features as
presented in Section IV-B. Overall when focusing on the
F1 score of Delalleau+ in Table IV and comparing it
to the corresponding score of NN+ in Table III we see that
using the competitive balance models is more effective for the
determination of balanced matches than using the probability
of winning. Another takeaway is that while NN+ performs
similar to Delalleau+, we observe that the same applies
to Linear+, whereas this is not the case for Logistic+.
We optimized this hyperparameter for best performance of
Delalleau+ model (obtained by ω = 0.3).

D. Training and inference times

Table V compares the training and inference times required
by each of the prediction models. Column 1 denotes the
balance definition the corresponding model uses as described
in Section IV-C. The training time represents the time required
to train each model over a series of matches that occurred
within a 3-month period. The inference time of each model
is the time required to make a prediction, averaged over 20
matches. We report both the mean and the standard deviation
of the models’ running times in seconds.



Prediction Model Model Time 3v3
Training Inference

Competitive balance Dummy 1.0e-04 1.0e-05 (± 0.0e-00)
Competitive balance AvgSkill 5.0e-02 5.0e-05 (± 0.0e-00)
Competitive balance Linear 8.2e+00 7.0e-05 (± 0.0e-00)
Competitive balance RndFrst 9.9e+03 6.0e-03 (± 7.0e-04)
Competitive balance NN 2.3e+02 2.1e-02 (± 1.0e-02)

Probability of winning Logistic 1.2e+02 6.0e-05 (± 0.0e-00)
Probability of winning NNSoftmax 3.7e+02 2.1e-02 (± 5.0e-03)
Competitive balance Linear+ 5.6e+00 5.0e-05 (± 0.0e-00)
Competitive balance RndFrst+ 8.3e+03 7.0e-03 (± 1.0e-02)
Competitive balance NN+ 4.7e+02 2.4e-02 (± 1.4e-02)

Probability of winning Logistic+ 6.2e+01 6.0e-05 (± 0.0e-00)
Probability of winning NNSoftmax+ 3.6e+02 2.3e-02 (± 6.0e-03)
Probability of winning Delalleau+ 2.8e+01 2.3e-02 (± 5.0e-03)

Model Time 6v6
Training Inference

Dummy 1.0e-04 2.0e-05 (± 0.0e-00)
AvgSkill 3.5e-02 6.0e-05 (± 0.0e-00)
Linear 5.2e-00 6.0e-05 (± 0.0e-00)
RndFrst 7.7e+03 8.0e-03 (± 1.0e-03)

NN 1.3e+02 2.4e-02 (± 1.2e-02)
Logistic 8.7e+01 7.0e-05 (± 0.0e-00)
NNSoftmax 1.2e+02 2.4e-02 (± 7.0e-03)
Linear+ 3.7e+00 8.0e-05 (± 0.0e-00)
RndFrst+ 6.2e+03 8.0e-03 (± 1.0e-03)

NN+ 1.6e+02 2.8e-02 (± 8.0e-03)
Logistic+ 5.3e+01 7.0e-05 (± 0.0e-00)
NNSoftmax+ 2.4e+02 2.7e-02 (± 1.0e-02)
Delalleau+ 1.6e+02 2.7e-02 (± 8.0e-03)

TABLE V: Training time required for matches that occurred within a 3-month data period. Inference time averaged over 20
matches. The left table is for 3v3 matches and the right table is for 6v6 matches.

Observe that the training and the inference times of the
linear models are approximately 10x and 100x faster, respec-
tively, compared to the corresponding times of the neural
network-based models. In online gaming taking the training
and inference times into account is essential to provide high-
quality service to the user without latency. Therefore, even
though the Linear+ model’s F1 score is slightly lower
than the one of the best-performance NN+ model, in practice
trading-off performance for speed can be essential for online
gaming. Note that the training and inference times of the 3v3
dataset are higher than the corresponding ones of the 6v6
dataset. This is because the total number of matches in the
6v6 dataset are fewer compared to the 3v3 dataset.

E. Significant features

This section provides a discussion on the important features
of a match for predicting competitive balance. Table VI
presents the most statistically significant features with their
coefficient residuals and a corresponding brief description
of their meaning in the team sports game. For all features
p < 0.001.

An interesting observation is that the frequency of dropouts
(row 1), a common phenomenon in team online games, is
a strong indicator of competitive balance. A player dropping
a game before it finishes results in having a team with less
human players and therefore gives the lead to the opposing
team. As expected, statistics on the past actions of the players
(row 2) are also significant for competitive balance, and in
this case this action was particularly the assists that occurred
in the game. Rows 3-5 correspond to the role experience
players have. In the team sports game we are considering, the
most important roles are defense, and right and left offense.
However, there are other roles in the game that appear to not
be critical to the final outcome. In row 6 we observe a negative
coefficient for the frequency of winning feature. This implies
that the largest the frequency of previous wins for a team
the more unlikely it is that the match will end with a balanced
score. Finally, as expected, the number of players in each team
at the beginning of the match (row 7) also seems to impact
balance. Potentially, this is because teams with less players

are assigned with bots whose playing behavior significantly
deviates from a human’s, and thus can be more unexpected.

Note that while Table VI presents the features with the
largest coefficients in magnitude, we considered other features
as well that had much smaller impact. For instance, in addition
to using the average of the features we also considered
their corresponding standard deviation. Furthermore, we also
evaluated the skill ratings of the opposing teams. The results
showed that even though skill rating was not among the most
significant features, we cannot draw conclusive results about
its importance because the datasets we used comprise real
matches between teams of close team skill ratings. That said,
we remark that performing a statistical significance test after
the proposed model has been deployed in the matchmaking
system, could provide us with potentially deeper insights, even
though we expect the presented results to mostly hold.

In Table VI, column 4 provides the descriptions of some of
the most significant features of the team sports online game
that we are investigating. In addition to the statistical analysis
of Table VI we created correlation matrices to identify high
amount of correlations that would suggest unreliable predic-
tion estimates and removed these features from the dataset,
which are ommitted however due to lack of space. Finally, we
used the recursive feature elimination feature selection method
and the results of the statistical analysis to decide the best
subset of features for each of the baseline methods (when
applicable) and for our proposed model presented in Section
V-A. An interesting observation was the common consensus
between the feature selection methods and the different models
about the significant features for competitive balance.

VI. CONCLUDING REMARKS

In this paper, we have examined the problem of making
matches that exhibit competitive balance. Through simulations
on an online team sports game published by Electronic Arts
(EA), we demonstrated that regressing the final score differ-
ence on carefully designed player, team and match features
followed by a binary threshold can significantly outperform
aggregate skill-based models in predicting match balance.
Our approach provides insight into how simple, generalizable
attributes of players and teams can be used to better capture



M Features Coeff. Coeff. Description in Team Sports games
3v3 6v6

avg freq dropout +1.128 +1.164 Average dropout rate of the players in Teams 1 & 2
avg assists abs diff +0.889 +0.741 Absolute difference of the average number of assists between Teams 1 & 2
avg freq defense +0.850 +0.918 Average rate of playing defense among players of Teams 1 & 2
avg freq left +0.856 +0.504 Average rate of playing left wing among players of Teams 1 & 2
avg freq right +0.843 +0.494 Average rate of playing right wing among players of Teams 1 & 2
avg freq wins −0.334 −0.178 Average win rate among players of Teams 1 & 2
cnt players +0.117 +0.142 Number of human players in Teams 1 & 2 in the beginning of the match

TABLE VI: Statistical analysis of indicative most significant features. The fourth column describes these features for the online
team sports online games used in our experiments.

in-game dynamics that impact match outcomes. We also show
that using a linear model with the specific features can lead to
computational savings ranging by orders of magnitude with a
small sacrifice in predicting performance.

A main focus of this work is to provide insight to game
designers on how to improve the quality of online team games
through better matchmaking. We believe that the presented
definitions, features, prediction models and experiments can be
utilized by game designers for predicting competitive balance
in other types of online games. We have seen how the proposed
models generalize from 3v3 to 6v6 games, but it still remains
to see how it can be evaluated in different sports games and
larger teams. Finally, note that the models and experiments
illustrated in this paper are based on existing player data. The
approaches described here have not yet been deployed in a live
matchmaking service. However, they provide the hypotheses
for A/B testing once they are deployed in the game.
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