
Practical Game Design Tool: State Explorer
Rokas Volkovas

QMUL
London, UK

r.volkovas@qmul.ac.uk

Michael Fairbank
University of Essex

Colchester, UK
m.fairbank@essex.ac.uk

John R. Woodward
QMUL

London, UK
j.woodward@qmul.ac.uk

Simon Lucas
QMUL

London, UK
simon.lucas@qmul.ac.uk

Abstract—This paper introduces a computer-game design tool
which enables game designers to explore and develop game
mechanics for arbitrary game systems. The tool is implemented
as a plugin for the Godot game engine. It allows the designer to
view an abstraction of a game’s states while in active development
and to quickly view and explore which states are navigable from
which other states. This information is used to rapidly explore,
validate and improve the design of the game. The tool is most
practical for game systems which are computer-explorable within
roughly 2000 states. The tool is demonstrated by presenting how
it was used to create a small, yet complete, commercial game.

I. INTRODUCTION

A. Video Game Design is Tedious

At their very core, games are systems built for human
interaction. Building these systems is the art form game
designers specialize in, driving the evolution of game types.
However, we argue, that in terms of the development support,
modern video game design is nowhere near as advanced as the
secondary skills associated with game development. In other
words, the premise of this paper is that designing systems for
video games is a tedious process and some of the tedium could
be alleviated by exploiting available computational power.

The specific problem identified is that a significant amount
of game development time is consumed by play-testing. While
some of that time is fundamentally inseparable from game
development, we argue that a considerable amount of it is
wasted navigating through the game states to inform the next
design-iteration decisions. This information could be in the
form of ensuring that a state of a game is accessible or not,
guaranteeing some values of the game state are consistently
reached, and other similar variants.

Examples of wasted time are the playthroughs to make sure
that a level in a puzzle game (e.g Sokoban) is solvable,
playing a level of a Match-3 game (e.g Candy Crush) a
few times to get the idea of the average number of moves
needed to solve it or navigating dialog trees in text-based
adventure games (e.g. A Dark Room). In all these cases,
the information being extracted through the play-testing is
technical in that it does not rely on the human experience.

In other words, these types of information extraction can
be evaluated by writing specialized tests. However, from
the authors’ experience, manual play-testing is usually faster
than writing and maintaining specialised test code. This is
highlighted by the fact that the tests would only be valid for
as long as a system is present in the game. Writing tests when
design alterations are common is not a good use of time. Can
this issue be circumvented?

B. Problem Scope

To approach solving the problem of shortening the iteration
cycle of designing and building systems for games, we first
narrow down its domain and define the scope of the problem
in question.

Our idealized set of features to address the problem of slow
video-game design iteration speed were identified. Conceptu-
ally, these were the ability to:

• navigate game states manually
• navigate game states automatically
• to identify states of interest
• examine the explored states

Given a tool with these features, a video game designer can
delay manually play-testing the game for longer by using the
information provided by the tool. Boolean questions, such
“is this Sokoban level completeable?” or “can the player
move through a door without getting the key?” are answered
immediately, avoiding unnecessary play-testing.

While there are many more features that can potentially
cut down on the design iteration cycle time, these were
identified as the crucial foundation ones, upon which further
improvements can be constructed.

C. Problem Domain

Having defined the conceptual requirements of the tool,
the specific technologies used are still in question. While the
individual approach to designing a game may vary drastically
from person to person, inevitably, in order to be playable on
a computer, all video games have to be programmed on a
computer in some way.

From the programming level, any type of further scope
reduction leads to sacrifices in ability to express some system
descriptions. In order to maintain the generality of being able
to program any system (not necessarily a game) and show
the viability of the developed tool, a language was selected to
implement the tool for. Language generality is a particularly
important feature, as iterations in game designs might fluctuate
wildly between different types of system behaviour.

The selected language was chosen to be GDScript, which
is the scripting language used in the Godot game engine.
Same language was used to implement the tool as a plugin
for the engine editor. With this setup, the built plugin can
be thought of as another tool in the engine toolbox. All the
language features used in this project can be readily converted
to other languages, the primary reason for using this specific
setup was the authors’ familiarity with the environment.

1



D. Game vs Mechanics analysis

Given the nature of the task of speeding up game design,
it is important to stress the difference between supporting
games and their mechanics. Arguably, non-trivial games are
never conceived as a whole. Instead, they are constructed
from systems the player can interact with. These systems,
or mechanics, are not necessarily games, but are essential
components of games. These include the ability to play a card,
shoot monsters or steer a car. Many games share mechanics,
but differ in the way they are used in combination with other
mechanics. As such, they can be viewed as the building blocks
of games. This is to say that designing games first requires
the design of mechanics; and so a tool, built to support game
design, should fundamentally support design of mechanics. To
rephrase, the goal of this project was to produce a tool which
would be useful even in designing mechanics such as moving
on a 2D grid, where there is no winning or losing.

II. RELATED WORK

A. (Lack of) Game Design Support

In a 2012 paper [1] Katherine Neil identifies a deeply
related issue of lack of tools for game design:

“While nobody would expect an architect, for example,
to design a building with Microsoft Word, using natural
language to communicate the layout of a building prior to
construction, game designers are required to do something
somewhat analogous to this.“

She argues that in order to overcome the hurdle and advance
the research in the field of game design support, real world
data of how game design is conducted in practice is necessary.
In the eight years since the analysis, little has changed. She
goes into more depth in the topic in [2].

Notably, game design suffers from being not only a rela-
tively new art form, but also a tremendously time-consuming
one. Specifically, while the introduced tool uses the design
of a single game as a data point to show how game design
is done by some portion of smaller developers, it nowhere
near represents the entire industry. Furthermore, the design
and development of the game, by a single person, took roughly
three months of full-time work with some experience in game
development. Design taking roughly 70% of the work, about
30% of it mechanical, other 40% being the visual design,
which also contributed to the mechanical design decisions. In
other words, getting the smallest and cheapest possible useful
data point in game design consumes three months of time.
This makes the lack of tools supporting game design more
understandable, but no less bearable.

Another interesting point to notice is that Microsoft
Excel, the popular spreadsheet software, is a common skill
new applicants for game design positions are expected to have.
The following is a brief list of larger companies listing the skill
as required or at least desired for a game designer position
live at the time of writing: Ninja Theory, Creative Assembly,
SEGA Europe Limited, ZeniMax Media Inc, Machine Zone.
The presence of such a general tool at the core list of skills

sought after reinforces the perceived lack of tools supporting
the process of (video) game design.

B. Machinations

While there is no tool which would would ubiquitously
used or at least known by game designers, there are defi-
nitely practical and research attempts at establishing one and
Machinations [3] is arguably the most prominent example.
Figure 1 shows the basic visuals of the program - a dedicated
design application with a UML diagram-like interface.

The primary goal the program attempts to achieve is the
separation of the system development from games as much, if
not more, as you would with 3D modeling software. It does
this through the creation of a whole ecosystem for mechanics
development. It can be argued that this is both its greatest
advantage and disadvantage.

Through isolation it can make assumptions, allowing quick
access to features not easily integrate-able in traditional pro-
gramming. On the other hand, the relative iteration speed
comes at the cost of a large up-front knowledge load for the
person learning the tool and a lack of generality: constructing
a game in machinations can be seen as building a model of the
game, not the actual game itself. This is the most significant
area where the introduced tool differs. We argue that a self-
contained development environment is a milestone that is to be
reached eventually, but at the same time feel that reaching that
milestone must step through a series of cornerstones, bridging
the available technology with that of self-containment.

Much like Blender (3D modelling software) exports to
many different standardized 3D model representations that
game engines can take and interpret, a tool created for the
purpose of building mechanics must integrate with the most
prominent tools used already; all without a human involved,
as is the case currently. To achieve this, a programming
language library like interface with the developed prototype
should provide a lesser barrier of entry for the designer already
programming prototypes and introduce the concepts necessary
to make the transition to standalone tools.

Figure 1: Interface of Machinations, the tool attempting to
solve the most similar problem to the tool introduced. Taken
from machinations.io [Accessed: 2020-03-16]

2



C. Other Work

Other work done in the field of improving game design
iteration speed largely focuses efforts on automated solutions
to common problems through procedural generation (PCG) or
automated play-testing, with algorithms employing heuristics
to make (sometimes crucial) decisions. While not directly
related, the following research could potentially become a
natural extension or, at the very least, conceptually influence
the direction taken with the tool introduced in this document.

In [4], the concept of merging states into hyper-states to
simplify game state graphs is presented. Interestingly, the
information extracted relies on the ability to have the game
states easily explorable (and in this case, fully explorable),
but there is no environment to support this type of analysis
for general game design. The introduced tool sets this type
of environment up, allowing more state exploration based
information extraction, including learning curve extraction [5].

Additionally, most of the modern automated game explo-
ration work in PCG and general game AI play-testing, which
are attempting to aid the problem of improving design hurdles
through different means, seems to stem from the ideas put
forward in [6]. These ideas build on the desire for tools to
work along side the designer, if not to outright replace her.
For example, in AI play-testing work such as [7] the prevailing
fundamental assumption is that the agents playing the (usually
nearly complete games, at which point no significant changes
are expected) games can roughly simulate human play. Much
the same way, procedural generation, even in ambitious work
such as [8], takes away fundamental control from the designer,
which we attempt to explicitly shy away from and build on the
core idea of building tools that can speed up certain designer
processes instead of guiding them.

This is not to say that work done in these areas is not
helpful or cannot be transferred to suit our outlined goals.
On the contrary, the algorithms developed for utilizing general
game playing agents [9] or generating levels [10] may well be
something a designer would love to see. The largest hurdle
stopping her from doing so, we argue, is the complete shift in
workflow needed to make use of these advances.

Figure 2: Tool Context: the introduced State Explorer iteration
is implemented as a plugin in the Godot game engine. Image
above points to the SE view integrated alongside the basic
engine features of the text editor, file explorer and others.

III. STATE EXPLORER - SE

The tool introduced in this paper was given the name of
State Explorer and abbreviated to SE or tool from
this point onwards. To minimize confusion, this section first
describes the functionality of the tool, followed by the de-
scription of its current, rather obtuse and less important, visual
interface, along with game system exploration examples.

A. SE features

Fundamentally, SE is built around three primary features:
• inspection of user code
• visualization of user code states
• user code state navigation

Code inspection and visualization features are commonplace in
code debugging. Adding state navigation can hopefully trans-
late their utility to game design. Inspection allows constructing
the system state and navigating it in order to find states of
interest, while visualization displays those states back to the
user. Given these features, the tool visual interface has to
display the current state alongside the list the states of interest,
reachable from the current state. Symbolic representation of
the tool is presented in Figure 3.

B. SE is a plugin

The first step to understanding how the tool integrates into
the designer’s workflow is internalizing that SE is a plugin –
an optional extra feature – in a development environment. At
a high level, it serves the same purpose of a file explorer: it
allows the user to find relevant information quickly, but is not
strictly required for the purpose of developing a game. Figure 2
shows SE as one of the panels in the Godot IDE. For further
emphasis, State Explorer is not a tool for designing systems;
it is a tool for facilitating the design of (game) systems.

As an analogy, SE is like a voltmeter used to quickly
determine the voltage between two points on an electrical
circuit instead of solving a complicated series of equations
every time the circuit is changed. Depending on the type of
the project, a voltmeter may vary in how useful it is. Similarly,
SE provides some information, otherwise not easily available,
but the relevance of that information varies depending on the
system being designed.

Figure 3: Symbolic representation of the introduced tool, State
Explorer, visual interface. The tool provides the user with
the list of states (left) and the state visualization (right),
implemented by the user.

3



C. SE visualizes states

To deliver useful information quickly, SE uses a designer
implemented state visualization. The visualization can take
two forms:

• string of text
• pixel data

Text visualization is common in early prototypes, when ren-
dering to the command prompt / terminal window and later
iterations tend to have visuals drawn to screen. In both cases,
no extra work is needed apart from passing the already existing
information to the tool.

In other words, when developing a game system, the ability
to represent it visually will inevitably be implemented, this
representation is what can also be used by the tool to show
states. Furthermore, since the tool makes no assumptions on
what is being drawn, any type of information, as longs as it is
presented as a string or an image, can be selected to be shown
on drawing a state.

D. SE representation structure

Figure 4 shows the visual interface of the tool, which
mirrors the symbolic representation in Figure 3. This is what
is seen in the engine panel dedicated to the tool. The interface
is made of three main parts, outlined and labeled as A B C:

• A (large circle in the middle) - the active state
• B (small circles surrounding A) - the next relevant states
• C (area overlaying A and B) - game visualization location

That is, the whole center area C is used for drawing parts A, B
and the game visualization as a transparent overlay (disabled
here). The circles represent game states. Large, always present,
center circle A represents the currently active state, while
the surrounding circles C represent the next relevant states
reachable from the currently active state.

The circles are interactable. When hovered over using the
mouse, the tool draws a semi transparent visualization returned
by a method implemented by the designer overlaid on top
of the circles. When a circle is clicked, the tool makes the
associated state the active state – it becomes the large center
circle – and the next relevant states are regenerated and the
interaction cycle resets.

Figure 4: State Explorer visualization: the image above shows
the current (at the time of writing) iteration of the tool interface
without a game visualization overlaying it.

E. Next Relevant States

The central value of SE lies in its ability to navigate
through the game states and find the next relevant states.
Conceptually, the tool explores all possible game scenarios
exhaustively and asks the designer whether or not the encoun-
tered state transitions should be shown in the visual interface,
whenever the answer is positive, the state is marked as a next
relevant state and is no longer explored. When the exploration
is complete, the active state with all the discovered NR states
are presented in the 4 format the designer can interact with
manually.

An important distinction to highlight is the difference be-
tween next relevant states and the next available states. For
example, in Sokoban, the next available states are always
the possible moves the player can make. However, the next
relevant states can be the states where the player has just
pushed a box or whenever the player moves on to a specific
tile or when a box is pushed into a location where it can no
longer be moved etc. The choice of what the relevant states
are is left entirely to the designer.

The next relevant states are the cornerstone of what makes
the tool useful. They give the designer full exploratory control
and probing of information that is relevant at the time, skipping
the irrelevant states. For example, if it is crucial that the player
can push a box into a certain location (still Sokoban), every
time the level is changed, the designer would have to step
through the states (mentally or through playing) to ensure that
is the case, whereas the tool would provide the information
almost instantly, assuming the information is within reach. ‘

F. State Explorer State Exploration

In order to implement the search for next relevant states,
the tool reads the designer code and constructs a starting
state by instantiating the root object and repeated copying and
modifying the state. To allow for this search, and in turn use
the tool, the user must implement two methods:

1) transition_isRelevant(from, to)
returns a boolean indicating whether or not the transition
from one state from to another to should be shown

2) get_actions()
returns a list of actions the tool should try applying to
the state the method is called upon

Listing 1 shows the high level algorithm used, which is a
slight modification of the Breadth-First search algorithm. The
main changes are that search is continued beyond finding a
single relevant state and that relevant states are not expanded.

func explore_state(state):
for action in state.get_actions():

var nstate = state.apply_action(action)
if nstate.was_seen(): continue
if transition_isRelevant(state, nstate):

relevantStates.append(nstate)
else:

toExplore.append(nstate)

Listing 1: Pseudocode logic of SE state exploration

4



G. SE user guidance
The tool in its default mode of operation is equivalent

to a brute-force explorer. Exploring all potential states can
be costly and completely unnecessary if the designer knows
where to look for the information. There are two input sources
of guidance the designer can provide to the tool, avoiding
unnecessary exploration:

1) restricting the list of actions to the ones of interest
2) restricting the state variables to the ones of interest

Action restriction allows the designer to explore only a
specific set of actions, by excluding others from the list
when get_actions() is called, forcing the tool to skip
considering those states. This can be useful in cases where
the player has multiple paths in the game but only one of
them is being actively developed.

Similarly, restricting what state variables are being tracked
for changes allows the tool to ignore changes which have
nothing to do with what is being explored. For example, the
movement of an enemy on the other side of the map is often
irrelevant to checking how high the player can jump.

IV. SAMPLE MECHANICS

To test the waters of the tool’s viability and prior to
committing to a serious project, a variety of well established
game mechanics were implemented. The following examples
showcase quickly showcased the benefits and limitations of
State Explorer. The goal in these examples was to
develop the entire game or one of its primary systems and see
whether or not the tool supported their development. Note the
use of the word development instead of design since the games
are already designed, but potential opportunity for change was
paid attention to as well.

(a) Starting State (b) Future State 1

(c) Future State 2 (d) Future State 3

Figure 5: The images above show the tool in use exploring
the states of the in-development Tic Tac Toe imitation.

A. Mechanics of Tic Tac Toe

. The first system implemented was that of Tic Tac Toe.
The logic of the game is as follows:

• there is a 3x3 board
• 2 players take turns in placing distinct symbols on it
• player with 3 aligned symbols wins

To implement it, an 2D array variable for the board, holding
the values of each cell was created. This was followed by
implementing the logic for drawing the symbols on the screen.
Finally, 9 keys representing the different placement positions
were mapped to the actions of placing the player symbol. At
this point the game could be play-tested by manually running
the game and placing the symbols by pressing the appropriate
keys, which appeared to work correctly.

Connecting the implemented logic to SE was trivial as
all it needed was one function returning the 9 actions and
another implementing the state drawing, which already existed.
Figure 5 shows the tool being used with (a) showing the default
game state, (b) one of the relevant ones from (a) and (c)(d)
showing relevant states from state (b). Interestingly, (d) shows
that it is possible to draw a circle on a cross, highlighting a,
in this case unwanted, design implementation flaw, which was
not discovered on manual play-testing.

B. Mechanics of Sokoban

The second system implemented was the movement and
pushing mechanics of Sokoban, which feature a player
navigating a 2D grid of open tiles using the adjacent directions
for movement, not being able to move into walls and pushing
boxes when moving into them if there is an open tile behind
them. Similarly to the previous system, it was implemented
using a 2D array with values, this time using only 4 keys as
necessary for the player movement.

This time the game was initially represented using text
and playable in the terminal window. This was also easily
connected to the tool by passing it the string of the game state
as the visuals. Figure 6 shows the resulting tool interface, with
the active state shown on the left and the next relevant state
on the right hand side.

(a) Current Game State (b) Next Relevant Game State

Figure 6: Images above show the developed tool in action.
The tool shows the starting state and the relevant future state
of Sokoban mechanics, where the symbols P.B# represent
the player, floor, box and wall, respectively.

5



The left image shows the player standing the corner of a
3x3 walled room. The next relevant state, in this example, was
chosen to be the state when the the box is moved. The tool
correctly detected the existence of 4 such possibilities (4 small
circles) and one of them is shown in the right hand side image,
indicating correct system implementation.

Taking things further, the graphics were replaced with
colored squares to indicate the different tiles. The result could
the be also passed on to the tool. This system implementation
showed the usefulness of the tool through its undo feature,
allowing to take turns back, without the logic for it being
implemented in the game itself, speeding up the feature testing
time, skipping the need to restart the game.

C. Mechanics of Breakout

The final smaller system implemented using the tool was
one imitating Breakout. In contrast to the previous systems,
this one is meant to be played in real-time, meaning there
are many more states to step through. The game works by
the player controlling a paddle, moving it left and right to
bounce a ball into a wall of bricks, which get removed on hit.
Regardless of the game genre being vastly different, it was
integrated with the tool just as easily as the previous examples.
Figure 7 shows the implemented visuals in the tool panel.

In contrast with the previous examples, here the guidance
features of the tool became crucial to gain useful information
quickly. For example, in the figure, the next relevant state, was
chosen to be the state when the ball returns below a certain
screen height position. This forced the tool to show the bricks
removed by the ball after it bounces around the outer screen
edge or, which allowed measuring the possible angle range at
which the ball performs the trick with ease.

Furthermore, this was only possible to do quickly (within
roughly 2000 states and under 2 seconds upon saving the
code) when only the state of the ball was tracked, explicitly
ignoring any state changes with the ball in the same position,
but different paddle position.

(a) Current Game State (b) Next Relevant Game State

Figure 7: Images above show the developed tool used in
development of an imitation of Breakout. Left image shows
the starting state, while the right one shows the only next
relevant one, skipping irrelevant ball movement states.

V. ETERNOWER

In order to sample a data point of how useful the tool
is in a more realistic design environment, it was used in
the development of a small, but an original and complete
commercial game1, called Eternower. The game is a grid-
based tower-defense game and this section outlines how it
works and why it was chosen as a useful type of game to
evaluate the potential of the tool for practical game design. A
screenshot of the game is presented in Figure 8.

A. Tower Defense

While the game was set out to be an original game, it was
chosen to be built in the area of tower-defense (TD) games.
TD games typically work as follows:

• There’s is path with a source and a destination that can
be traveled on

• Every level, a number of enemies appear on the source
of the path and start moving the the destination As soon
as they reach the destination, they reduce player’s health

• Player loses when her health reaches 0
• Health loss is prevented by strategically placing towers,

which shoot the enemies
• Towers cost money, money is received by killing enemies

What makes a TD a good genre for exploring the nuances of
sE is that it relies heavily on the designer striking a desired
balance between a large number of state variables, which
at the very minimum include: enemy health, speed, reward
and number, player health, available gold, tower selection and
tower positioning. Tweaking any of the values slightly typi-
cally changes the gameplay drastically, changing the viability
of the established strategies.

A common way of implementing a TD game is to have a
set constant path and tower locations where the gameplay is to
select the appropriate towers and choose how to upgrade them
to keep up with strengthening enemies. This provides the game
with predictability and gives more control to the designer,
which makes it less useful for tool evaluation. To counter this
drawback, mazing and upgrade paths, less common features
in the genre were added.

Figure 8: A gameplay screen of Eternower, a commercial game
developed to explore the potential of State Explorer

1Steam: https://store.steampowered.com/app/1031790/Eternower/

6



B. Mazing

Mazing in TD games is the ability to place towers on
the same path the enemies walk on, forcing them to take
alternative paths. This in turn results in encouraging players to
maximize the amount of time enemies spend walking along
the path, getting damaged by towers by building mazes out
of said towers. Mazing adds a significant part of complexity
to the game, which makes the game much more difficult to
design due to the number of possible maze configurations.

Consider Figure 9. The numbers on the left-hand side shows
the default path enemies take: they spawn at node labeled 1
and move through nodes 2 - 7. When 7 is reached, the player
lives count is reduced. Both images side by side illustrate how
different the game board state can look depending on the fort
placement. Anticipating all the possible variations becomes a
nearly impossible task for the designer, forcing her to rely on
intuition, potentially missing some game breaking (compared
to what was intended) plays. These mazing properties make it
a good candidate for testing the game design tool viability.

C. Upgrade Paths

Another feature to increase the difficulty in designing the
game was the introduction of upgrade paths. Upgrade paths
are a system that allows the player to choose how the game
is modified over the course of a single play-through. It works
as follows:

1) Player completes a level
2) Two game-modifying options are presented
3) A new level can only be started when an option is selected

The reason this is a significant design complication is that
each one of the options drastically change the way the game
has to be played in order to avoid losing. Options include
modifications such as: changing the health or speed of all
future enemies, allowing to build a new fort for free, giving
the player more resources or changing the way enemies move.

Figure 9: Eternower mazing: left figure shows the constant
starting state of the game, while the right one shows one of the
potential player-constructed mazes (using large white-outlined
squares as towers) and their impact on the path anti-nodes
move through. The maze shaping is the primary source of
complexity (and potentially attraction) in the game.

All of these features together make designing a game
difficult when a certain balance is desired, making them ideal
for introduced tool evaluation.

VI. TOOL UTILIZATION

To reduce the scope of evaluation, the tool was used when
the game idea was conceptually established. That is, the genre
was preset as were the basic pillars of mazing and upgrade
paths. Any further decisions were considered to potentially
be aided in exploration with the tool. There were three
main use-cases identified for the tool while developing the
game: fort placement location scouting, potential level data
modification through fortunes (upgrade paths) exploration and
level resolution.

A. Upgrade paths

One of the core game systems is the ability to modify the
future levels via options presented to the player at the end
of each level. For example, at the end of a level the player
can choose to either increase the health of all future enemies
by 10 or increase their total number per level by 1. Many of
the choices directly impact the stats of later levels, making
predicting the possible stats of say level 10 difficult as there
are 210 possible option paths to reach it.

Using the tool, this information became readily accessible
and allowed making decisions about balancing that would
have otherwise taken a while before they would have been
evaluated due to the time it took to get to level 10. Specifically,
using SE, with a single line of code, the tool reports what the
different health values are possible. Knowing the range allows
immediately throwing away or at least reconsider fortune paths
which lead to impossibly high or low levels of health.

B. Path length

The second most clear use for the tool was the ability to
examine the available tower arrangements quickly. Identifying
the possible placements and how they impact the game is
crucial to ensuring a desired level of balancing is achieved.
Given a board setup the tool could be used to determine what
are the possible modifications to the current paths and what
the modifications do to the path length.

C. Level Resolution

The most crucial and time saving use case of the tool was
to resolve levels without playing them. Path length can be no
shorter than 60 steps. Each steps takes 0.3s of animation time
at default gameplay speed, resulting in waiting 18 seconds
every time a level configuration is to be tested. Using the tool
this can be skipped, which means that if the same amount
of time is spent for testing the levels, more information is
extracted due to the faster information gathering speed.

Using the tool this way also changed the mindset of ap-
proaching balancing. This way much less is left to estimation
and what feels right, because the information can be so readily
gathered, leaving the focus to the more subjective experiences
of animations and color palettes.

7



D. SE integration

It is important to emphasise that the tool is not a magical
machine automatically extracting useful information, helping
the designer. If used incorrectly, the tool quickly becomes
more effort to use than than to extract the wanted information
from the game manually.

Specifically, when integrating the tool with Eternower, the
game was already relatively far along into development in
terms of the final features it had. The part left unfinished was
the design and tuning of the systems, such as defining what
towers, enemies, levels and each of their abilities are available
when. It was found that integrating the tool with a game in
this stage of development was not a smooth and easy task.

The issues encountered were similar to those of adding a
new library of handling a specific task, that is done implicitly
across all the existing program systems. The most largest issue
being the lack of system isolation. That is, most of the data
that is relevant to the tuning is spread across a number of
files, which also handle logic for visual representation of the
system. Including animation data increases the amount of data
the tool has to keep track of at least tenfold.

In order to make use of the tool, the mechanics had to first
be separated as much as possible, which took a considerable
amount of time. However, the type of refactoring needed was
not unlike ones occurring when system focus changes in other
software. For example, many games are built with only the
English language available. It is not uncommon for developers
to hard-code the strings used for all text in the game in the files
that need them. This is the fastest way of building software,
but only until the developer finds herself wanting to localize
the game. Now, all the hard-coded string constants have to
be replaced by hooks, getting the appropriate string from an
isolated object along with writing new logic to replace those
strings when the language is changed.

This discovery unearths the topic of the game logic isola-
tion. The questions of “where does the game logic stop and
the aesthetics begin?”, “should there be a custom format for
defining mechanics (much like there are a number defining
3D models or audio files)?” and many others appear. While
interesting to explore, the topic is beyond the scope of this
document and the purpose of this subsection is to underline
the need for the isolation of the mechanics to streamline their
tuning and, as a side-effect, allow for easy SE integration.

In the case of Eternower, the tile fort node, anti node and
path positions used in the logic were directly the positions used
by the sprite objects that are drawn on screen. This highlights
that while data is the same, it does not mean that is should be
shared, in this case it is a (potentially foreseeable) coincidence.
To separate the logic out, all data related to fort nodes dealing
damage to anti nodes and player stats was first moved to
separate objects, established connections without reference to
any other game system before finally integrating it back to the
complete game. The final interface used with the visuals could
also be reused by SE.

VII. CONCLUSION AND FUTURE WORK

In this paper, a practical tool for game design, called State
Explorer (SE), was introduced. The problem of slow iteration
game system design iteration times, in contrast to other art
forms associated with game development, was identified. The
problem was approached by devising a tool to automatically
explore the design from a given state and return information
about potential states as requested by the designer.

The tool was first shown to provide information of potential
interest to a designer in select few distinct game systems
prominent in older video games. The tool was then explored
in more depth through its exploitation in the development
of a small feature-complete, commercial game Eternower.
While in general the tool was found to be irreplaceable in
the process of making both small and significant design deci-
sions, it was found that the tool excelled more in verification
problems rather than exploration.

To make the tool even more useful in game design iteration,
the future work on it is planned to improve the robustness
of the system along with the interface improvements. Ad-
ditionally, it is worth exploring the possibility of integrating
more sophisticated algorithms into the tool or even expose the
hooks necessary to support custom ones for more flexibility.
Improving the tool in these areas should eventually allow it
to be easily adapted into larger scale games, requiring less in
depth knowledge of its inner workings.

ACKNOWLEDGMENT

This work was funded by the EPSRC CDT in Intelligent
Games and Game Intelligence (IGGI) EP/L015846/1.

REFERENCES

[1] Katharine Neil. Game design tools: Time to evaluate. In Proceedings
of the DiGRA Nordic Conference, 2012.

[2] Katherine Neil. How we design games now and why.
https://www.gamasutra.com/blogs/KatharineNeil/20161214/287515/
How we design games now and why.php. Accessed: 2020-03-16.

[3] Joris Dormans. Machinations: Elemental feedback structures for game
design. In Proceedings of the GAMEON-NA Conference, pages 33–40,
2009.

[4] Michael Cook and Azalea Raad. Hyperstate space graphs for automated
game analysis. In 2019 IEEE Conference on Games (CoG), pages 1–8.
IEEE, 2019.

[5] Rokas Volkovas, Michael Fairbank, John Robert Woodward, and Si-
mon M. Lucas. Extracting learning curves from puzzle games. 2019
11th Computer Science and Electronic Engineering (CEEC), pages 150–
155, 2019.

[6] Julian Togelius and Jurgen Schmidhuber. An experiment in automatic
game design. In Computational Intelligence and Games, 2008. CIG’08.
IEEE Symposium On, pages 111–118. IEEE, 2008.

[7] Sinan Ariyurek, Aysu Betin-Can, and Elif Surer. Automated video game
testing using synthetic and human-like agents. IEEE Transactions on
Games, 2019.

[8] Cameron Browne and Frederic Maire. Evolutionary game design. IEEE
Transactions on Computational Intelligence and AI in Games, 2(1):1–
16, 2010.

[9] Diego Perez-Liebana, Spyridon Samothrakis, Julian Togelius, Simon M
Lucas, and Tom Schaul. General video game ai: Competition, chal-
lenges and opportunities. In Thirtieth AAAI Conference on Artificial
Intelligence, pages 4335–4337, 2016.

[10] Ahmed Khalifa, Diego Perez-Liebana, Simon M Lucas, and Julian
Togelius. General video game level generation. In Proceedings of the
Genetic and Evolutionary Computation Conference 2016, pages 253–
259. ACM, 2016.

8


