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Abstract—Balancing the options available to players in a way
that ensures rich variety and viability is a vital factor for the suc-
cess of any video game, and particularly competitive multiplayer
games. Traditionally, this balancing act requires extensive periods
of expert analysis, play testing and debates. While automated
gameplay is able to predict outcomes of parameter changes,
current approaches mainly rely on heuristic or optimal strategies
to generate agent behavior. In this paper, we demonstrate the use
of deep player behavior models to represent a player population
(n = 213) of the massively multiplayer online role-playing game
Aion, which are used, in turn, to generate individual agent
behaviors. Results demonstrate significant balance differences in
opposing enemy encounters and show how these can be regulated.
Moreover, the analytic methods proposed are applied to identify
the balance relationships between classes when fighting against
each other, reflecting the original developers’ design.

Index Terms—Automated game testing, balancing, deep learn-
ing, generative player modeling, imitation learning, video games

I. INTRODUCTION

Due to its steady growth in popularity and accessibility,
the video game industry has evolved to a multi-billion dollar
branch that surpassed all other entertainment industry sectors
including TV, cinema and music'. Along with this develop-
ment, player demands for content and mechanics are ramping
up to extents that even large companies struggle to manage [1].
Next to core content production, the majority of computational
and labour effort is put on the detection of gameplay and
experience bugs (e.g., 80% of the 50 most popular games on
the major distribution platform Steam? require critical updates
after launch [2]). While automated routines for the detection
and reporting of critical errors and solvability become more
popular in the industry [3], [4], balancing remains one of
the most difficult and time-consuming phases of the game
design process. The availability of versatile in-game units,
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character classes, factions or roles between which players
are able to choose from has become indispensable for many
successful titles, yet the balancing of these appears to open up
an incessant effort. Even prominent titles of competitive online
games that launched years ago still undergo persistent balance
patches (e.g. StarCraft II [5], Overwatch [6] or Guild Wars 2
[7]). Following the definition of Sirlin [8], a game is “balanced
if a reasonably large number of options available to the player
are viable” (where viability sets the requirement of having
many meaningful choices throughout a game), while “players
of equal skill should have an equal chance at winning”.
Together with frequently desired asymmetrical configuration
possibilities of these options, this inherently leads to com-
binatorial explosions, which can become hazardous for the
enjoyability of the game and the satisfaction of its players.
Even worse, Hullett et al. highlight that balancing issues most
of the time “only become apparent after many months of play”
[9]. Compared to straightforward fixable bugs, glitches and
solvability aspects, the trouble with balancing issues is that
they do not only appear during the launch of a newly published
game. Instead, balancing is an ongoing, repetitive task that is
heavily influenced by the perceptions of the player community:
“after each patch, often the discussion begins again, factoring
in new balancing or abilities for each class” [10]. In the game
industry, balancing is most often approached through long-
term expert analysis, excessive human play-testing, and per-
sistent debates with the community. Meanwhile, recent applied
machine learning techniques have become very successful in
outperforming human capabilities of playing, e.g. in Atari
games [11], classical board games such as chess, shogi and Go
[12], [13] or real-time strategy games (RTS) such as StarCraft
IT [14]. While computer-controlled agents employing these
approaches might also be suitable for automated game testing,
their utility for automated balancing is arguably limited, given
that optimal or super-human proficiency is not representative
for the population of human players the game should be
tailored for [15].

In this paper, we apply Deep Player Behavior Modeling
(DPBM) [16] to automated game balancing. Within DPBM,
individual decision making from game states is mapped to
a preference distribution of actions via machine learning,
approximating the replication of individual players. In contrast



to optimal or generalized models, the DPBM approach allows
for the consideration of many (potentially viable) playing
styles that players can employ instead of reducing it to a global
decision making module. In previous work, DPBM showed to
be successful in generating agents capable of offering chal-
lenges on the same proficiency level [17] and convinced other
players that they replicated individual behavior believably [18].

In this work, we used a dataset of the popular massively
multiplayer online role-playing game (MMORPG) Aion [19]
consisting of atomic decision making that was recorded
throughout 6 months and 213 players in one-versus-one situ-
ations [17]. From this, we generated DPBM-driven agents for
all players and benchmarked their proficiency against heuristic
NPCs in a two-dimensional study setup that manipulated the
offensive and defensive capabilities of the latter. While that
study gave initial insights about the basic versatility of classes
in player versus environment (PvE) settings, a subsequent
investigation examined how all player replicas playing against
each other in a player versus player (PvP) situation. For
the empirical assessment of the resulting proficiencies, we
utilized a metric that approximates the quality of single bench-
mark performances in terms of effectiveness and efficiency.
Evaluating the capabilities for automated game balancing
and individual proficiency estimation, we aim to answer the
following research questions:

e Can imbalances between in-game classes be detected
through generative player modeling with respect to PvE
and PvP?

o Can generative player modeling elevate automated game
testing to turn design specifications into optimized pa-
rameter constellations?

We hypothesize that agents that are representative of individual
players’ decision making are able to detect differences in
performance between classes and resemble the population
closer compared to generalized or random agents. Under
these conditions, DPBM should provide a viable technique
to map behavioral patterns to proficiency scores and to inform
automated game balancing empirically. This work contributes
to games user research and game development in academia
and industry by introducing a novel technique capable of
enhancing game testing processes with the potential of re-
ducing the associated effort. In addition, a proficiency metric
is constructed and presented that allows for the comparison
of benchmark results. Effectively, this indicates the added
value of assessing the replicated player population against
generalized or random models.

II. RELATED WORK

The implementation of automatic simulations of video game
play has become a viable and efficient alternative or im-
provement to tedious and non-exhaustive human testing for
the purpose of finding critical errors, solvability investigations
or parameter tuning. The majority of scientific approaches
focuses on detecting logical bugs or game crashes, such as
Radomski et al. [20] or Varvaressos et al. [21] who identified
violations of manually defined constraints via simulated play.

Buhl et al. [3] highlight the utility of autonomous testing
routines in everyday continuous integration and continuous
delivery pipelines by contrasting the amount of encountered
bugs against previous developments without them. Zheng
et al. [22] designed a game playing agent utilizing deep
reinforcement learning, while Chan et al. [23] made use of
a neuroevolution approach that on top of playing was able to
report on the constellation and sequence of actions that lead to
game malfunctions. Furthermore, Bécares et al. [24] mapped
human tester playthrough records to semantic replay models
using Petri nets and Iftikhar et al. [25] and Schaefer et al.
[26] introduced frameworks for autonomously testing generic
games of the platformer or puzzle genre, respectively.

A number of studies tackle solvability, such as those of
Powley et al. [27], Shaker et al. [28] or Volkmar et al. [29]
that aided the level design of (procedurally generated) games
by assuring potential solutions are feasible. Schatten et al.
[30] simulated large-scale dynamic agent systems to test quest
solvability in MMORPGs. Within the scope of point-and-
click adventure games, Pfau et al. [4] established a generic
adventure solver traversing these via reinforcement learning
and reporting crashes, dead-ends and performance issues. Van
Kreveld et al. [31] and Southey et al. [32] assessed difficulty
or interestingness approximations of levels or mechanics by
machine learning of descriptive in-game metrics.

Regarding balancing, scientific approaches often build on
simulations that iteratively assess balance criteria and dynam-
ically tune in-game parameters based on the former. Jaffe et
al. [33], Garcia-Sanchez et al. [34] and De Mesentier Silva
et al. [35] applied this paradigm to board or card games,
which was amplified by Mahlmann et al. [36] by introducing
procedurally generated cards on top of these simulations. In
other genres, Beau and Bakkes [37] utilized Monte-Carlo Tree
Search for balancing units of Tower Defense games, Morosan
and Poli [38] tweaked difficulty specifications in RTS and
Arcade games after neuroevolution agents assessed these and
Leigh et al. [39] dynamically balanced strategies though the
coevolution of two competing agents playing a Capture The
Flag game.

Closely related to the approach outlined in this paper,
Holmgard et al. [40] conflated atomic player behavior into
procedural personas to simulate and test different play styles
in a Dungeon Crawler game and Gudmundsson et al. [41]
utilized atomic choices in order to predict the difficulty of
various levels of a Match-3-Puzzle game. Nonetheless, even
if some approaches process some kind of human player
input, incorporating actual information about individual and
atomic player behavior has not been tackled yet. Generative
player modeling has the potential to fuse automatic simulation
methods with behavioral information, giving the developers
the opportunity to receive practically immediate insights on
which player strategies are popular, dominant and/or may
require rework. Further generative player modeling is able
to inform developers on how parameter tuning will likely
alter the outcome of strategies before presenting it to the
community, how implemented dynamic difficulty approaches



Fig. 1. Exemplary arrangement of a subset of skills available to the Sorcerer
class in Aion. Additionally, context-dependent skills (when the player or a
target opponent is in a particular condition) can be activated.

can be informed about parameter thresholds, and how to
automatically balance game mechanics after large-scale per-
mutations of classes, setups, parameters and behavior in all
stages of development.

III. APPROACH

This section details our decisions for the selected game
environment, the recorded data structure and the modeling
approach.

A. Game Environment

To select a representative game within a genre that con-
siderably suffers from the aforementioned balancing issues,
we chose the MMORPG Aion in which a typical set of in-
game classes is available. Melee classes (Gladiator, Templar,
Assassin) mainly deal close-combat damage, in contrast to
Magic classes (Sorcerer, Spiritmaster, Gunner) or Rangers.
Heal classes (Cleric, Bard) deal less damage but offer ad-
ditional support, while Chanters excel at the latter. Even if
many in-game situations involve multi-player constellations,
all classes are able to perform on their own in principle.
Combat is mainly fought out by activating skill actions that
harm the opponent(s) and/or benefit the player character (cf.
Fig. 1). Depending on the sequencing of these skills and their
contextual usage, individual players execute diverse strategies.
Even if these strategies rarely maximize efficiency, they resem-
ble situational preferences that emerge in personal play styles,
such as improving own offensive or defensive capabilities or
leading to maintained control over the opponent.

B. Dataset and Structure

Publicly accessible datasets that comprise vast proportions
of recorded real-world player information are found in
several instances, yet all of these third-party data providers
offer only publicly available statistical meta-data describing
high-level behavioral data. Even with the information about
which actions are used in which frequencies, no knowledge
is contained about the contextual game state during these
action decisions, which, in turn, limits the expressiveness of
the eventual generative agent. In contrast, we implement a
state-action architecture mapping contextual information to

individual player’s decision making (indicated in Fig. 2 as
input and output). Over the course of 6 months, 213 players
with considerable prior expertise of Aion were recorded
within a daily single-player dungeon instance in considerably
challenging one-versus-one combat situations [17]. Table I
provides the number of players in the dataset for each class.

C. Deep Player Behavior Modeling

DPBM realizes individual generative player modeling by
assessing atomic player behavior in a state-action architecture
and establishes a mapping among these via machine learning
[16]. For generating a replicative agent that is representative
of a single individual, the recorded behavioral data from
all relevant observations was retrieved from the underlying
database and fed into a feed-forward Multilayer perceptron
(MLP) with backpropagation and a logistic sigmoid activation
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Fig. 2. The DPBM architecture mapping game state (information about player,
opponent and preceding skill) to action (skill usage) probabilities. Design
decisions can be found in [17]. The size of the input and output layers varied
depending on the player’s class, skill set and usage. The resulting action
probability array is filtered heuristically by removing skills that are impossible
to execute due to cool-down, MP shortage or other insufficient conditions.



TABLE I
PLAYER COUNT OF EACH class (AND ARCHETYPE) IN THE DATASET.

MELEE MAGIC RANGED HEAL

33 Gladiator | 20  Sorcerer 13 Ranger 25  Cleric
19 Templar 18  Spiritmaster | SUPPORT 39  Bard
17 Assassin 10 Gunner 19 Chanter

function. The input layer consisted of 22 nodes describing
the contextual game state plus a set of nodes representing the
preceding skill. Consisting of the same set of skill nodes, the
output layer characterizes the probability distribution of action
choices with respect to the individual player and the input
situation (cf. Fig. 2). The sizes of the skill sets varied per
class, as shown in Table II.

The network was initialized randomly and contained 4 hid-
den layers with equal size to the input layer. It was trained over
1000 epochs, based on insights from previous work [16]-[18],
[42]; benchmarks prior to the study also indicated diminishing
returns when further increasing the range of parameters.

When exposed to the testing environment, the trained model
was applied generatively to retrieve a set of action probabilities
given the occurring state description at real-time. After a
weighted choice, the resulting skill was executed, followed
by querying the DPBM for the next situation, effectively
approximating the learned behavior from the original player’s
battles. Based on the player modeling taxonomy of Yannakakis
et al. [15], [43], this implementation realizes a model-free
(bottom-up) player modeling approach mapping gameplay
data to actions via classification. According to the player
modeling description framework of Smith et al. [44], DPBM
directly utilizes game actions (domain) to generate (purpose)
individually (scope) modeled behavior by means of induced
(source) training of machine learning techniques.

D. Proficiency Metric

To estimate balance discrepancies between classes we con-
struct a proficiency metric that assesses the quality of an
agent’s performance during evaluation. For the purpose of
measuring a generalizable efficiency factor we consider four
variables which are measured after a one-versus-one combat
situation:

o The binary value of having won against the opponent (w)

o The normalized temporal duration of the fight (¢)

o The agent’s remaining health point (HP) percentage (hp,)

o The opponent’s remaining HP percentage (hp,)

All variables lie between O and 1, are multiplied with
their respective weight (a, 3,7, d; all weights are equal for
this study) and normalized over weights and the sum of
observations (n), resulting in the final proficiency ¢ that
ranges from worst-case (0) to optimal (1) performance:
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TABLE 11
RECORDED NUMBER OF DIFFERENT SKILLS IN EACH CLASS OF Aion.
MELEE MAGIC RANGED HEAL
78  Gladiator | 52 Sorcerer 53 Ranger 48  Cleric
56  Templar 51  Spiritmaster | SUPPORT 78  Bard
57  Assassin 42 Gunner 57  Chanter

IV. EVALUATION

In this section we outline the two evaluation environments
(one-on-one PVE and PvP) used to assess the viability of each
class. In addition, the section presents the regulation technique
we used to mitigate balance discrepancies.

A. Player versus Environment (PvE) Evaluation

Focusing on differences between classes in one-versus-one
situations, we chose to investigate performances of DPBM-
driven agents encountering 100 opponents that incrementally
increase in difficulty (see Fig. 3). To render the analysis vi-
sualizable and human-understandable, we only manipulate the
offensive and defensive capabilities of each opponent, i.e. its
attack and maximal health points (maxHP) values respectively.
Since the proficiency distribution of a player population is
likely to entail a great variance, the initial configuration was
set to a trivial encounter, whereas the following modulations
of the opponent increased attack and/or maxHP by 25% per
iteration, up to a barely defeatable enemy. This led to a two-
dimensional benchmark setup of continually increasing chal-
lenge with similarly decreasing expected proficiency. Figure
4 demonstrates the proficiency distributions together with the
corresponding ¢ values of the best and worst DPBM-driven
agent compared to the overall average.

After the evaluation of the 213 DPBM agents across 100 op-
ponent configurations with incrementally increasing difficulty,
the resulting proficiency estimations were categorized into the
game-specific classes in order to compare their performance.

Fig. 3. In-game screenshot of the PvE benchmark (Aion [19]). DPBM-driven
player replicas encounter 100 heuristic opponents with increasing difficulty
in one-on-one situations (attack horizontally, maxHP vertically). Depending
on the game state between the agent and its target, emerging behavioral
patterns for action preferences and sequences can be monitored. For reasons of
observability, entities are spawned with sparse distance to other confrontations.
Yet, they are only able to damage and influence their respective counterpart.



proficiency scale

average player
©=0.68

worst player
$=0.34

best player
©=0.92

maxHP

attack attack attack

Fig. 4. Proficiency heatmaps of the best, average and worst player replication
of the benchmark. The horizontal axis denotes the increasing attack value of
the heuristic opponent while the vertical axis describes the increasing HP
value of it (+25% per step, respectively).

As baselines, for each respective class, we observed the perfor-
mance of an agent that modelled generalized (non-individual)
behavior and an agent with random decision making.

B. Player versus Player (PvP) Evaluation

While the process of Section IV-A approximates the players’
ability to cope with PVE encounters and therefore provides one
measure of balance estimation, another dimension worth ex-
amining is the balance between the classes themselves. Thus,
a subsequent evaluation pitted all player replicas against each
other in one-on-one PvP confrontations, leading to 22,578
unique combinations (including intra-class battles). The profi-
ciency outcomes of these matches were pooled and averaged
to measure systematic dominance or inferiority relationships
between classes. To prevent never-ending duels (e.g. between
two agents using the healer classes and mainly defensive
strategies), the maximal duration was capped at five minutes.

C. Regulation

The DPBM approach primarily focuses on informing game
development about possible imbalances within a player pop-
ulation; however, certain regulation techniques can follow
immediately, assuming that all classes should follow a similar
proficiency distribution. The most direct approach of regula-
tion would be to tune the environmental parameters such as the
offensive and defensive capabilities of opponents (similar to
Section IV-A). Thus, we subsequently determine a meaningful
target proficiency (in this example, the mean proficiency of all
iterations) and computed the mean squared error of measured
proficiency values of each player in a class. From this, we
reveal the approximate parameter values to tune by calculating
the center of mass of these errors per class. Eventually, the
proficiency distributions for all classes can be compared, given
the PVE benchmark results of the respective players and using
the tuned parameters for their opponents.

V. RESULTS

Table III outlines the testing prediction accuracies of the
employed DPBMs (using a 80-20 holdout validation method)
including conservative heuristic filtering within the most prob-
able 1, 5 and 10 skill choices. In addition, the table includes the
training times per player as measured on a NVIDIA GeForce
RTX2080 using Keras 2.2.4 with TensorFlow 2.0.0 backend.

TABLE 111
PREDICTION ACCURACY ON THE TESTING SET, WITH CORRESPONDING
TRAINING TIMES FOR THE VARIOUS DPBMS EMPLOYED.

Testing accuracy Training time

Top-1 Top-5 Top-10
M: 61.3% 75.3% 81.3% 7.24s
SD:  224% 11.8% 14.9% 1.68s
.
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Fig. 5. Proficiency results of player replicas across different classes. The graph
depicts mean values (indicated by x), median values (=), the proficiency of
the generalized model of the class () and random guessing (Q)).

A. Player versus Environment (PvE) Evaluation

Using a one-way ANOVA, we find a significant differ-
ence of DPBM-agent proficiency across classes in the PVE
evaluation, displaying a large effect size (F'(9,203) = 9.63,
p < .01; partial n> = 0.3; see Fig. 5). Further we use
Bonferroni-corrected two-tailed Welch’s t-tests to highlight
statistical differences between particular classes. Highlighting
notable disparities, players of the Spiritmaster, Gunner or Bard
class scored higher proficiency values than most other classes
while Chanter and Templar players were almost consistently
outperformed by other classes (p < 0.05). After further ¢-tests,
significant proficiency differences between individual DPBM
and generalized models became apparent (p < 0.05, Cohen’s
d = 0.61). This also holds in comparison to the random
decision making agent (p < 0.01,d = 2.45).

B. Player versus Player (PvP) Evaluation

With respect to the PvP evaluation, Fig. 6 visualizes average
proficiency values of player replicas from one class compared
to all other classes. While classes within the same archetype
(e.g. Gladiator and Templar both being physical Melee classes
or Sorcerer and Spiritmaster both being Magical ranged
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Fig. 6. Mean proficiency results of DPBM-driven player replicas in one class
(vertically) when fighting replicas of other classes (horizontally).

classes) had few proficiency differences (p > 0.05), distinct
superiority relationships emerge when different archetypes
are matched up. Rangers scored significantly lower against
Melee classes (Gladiator, Templar, Assassin, p < 0.05), yet
they consistently outperformed the Magic classes (Sorcerer,
Spiritmaster, Gunner, p < 0.05). The Magic classes were
equally and consistently able to dominate Melee classes,
effectively representing a rock-paper-scissors-like interaction
scheme. The Heal classes (Cleric, Bard) also outperformed
Melee, yet succumbed to both Rangers as well as to the Magic
classes (p < 0.05). Being the game’s primary support class,
Chanters were dominated by the majority of opposing classes.

C. Regulation

Figure 7 visualizes the regulation with the tuned opponent
parameter values for each class and the corresponding profi-
ciency distribution of DPBM-driven player replicas. According
to a one-way ANOVA, there are no significant differences
remaining between class proficiency values after parameter
tuning (£(9,203) = 1.42, p > 0.05).
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Fig. 7. Proficiency results of player replicas across different classes after
parameter tuning for a balanced resulting proficiency (¢ = 0.67). The graph
depicts mean values (indicated by x), medians values (-), outlier values ()
and tuned parameters.

¢ indicates the proficiency value of the generalized class model.

When compared to average adjustment values, opponents’
attack was regulated weaker for Melee and Support classes,
but notably higher for Magic and Heal classes. In contrast,
Rangers faced opponents with average attack, but considerably
increased maxHP after regulation.

VI. DISCUSSION

With regards to the PvE evaluation, the ANOVA and
subsequent post-hoc tests revealed significant differences in
proficiency between player replicas of different classes. This
might indicate imbalances of these classes, yet it should be
interpreted with respect to the underlying design guidelines.
For instance, the relatively low proficiency scores of the
Chanter and Templar classes likely stem from their reliance on
other players, either to support or to receive support from re-
spectively. Still, under the assumption that primarily damage-
dealing classes should be equally viable, certain discrepancies
emerge that point to certain magical classes (such as Spiritmas-
ter, Gunner or Bard) outperforming physical damage dealers
(such as Gladiator, Assassin) significantly. When interpreting
results of the PvP benchmark, it is worth noting that balanced
viability does not necessarily have to result in each class
having equal chances against all others. Depending on the
underlying design agenda, a similarly balanced constellation is
a rock-paper-scissors-like interaction scheme between classes,
which this evaluation was able to demonstrate approximately
(see Fig. 8). Nevertheless, the inferior performance of the
Chanter in both one-on-one PVE as well as PvP situations
might encourage developers to augment the versatility of this
class if its role is not only meant to support other players.

The approach introduced with this paper has no access to
the underlying design constellations of the original game and
primarily aims to inform developers about imbalances. How-
ever, we have already indicated and tested possible procedures
to adjust the viability of these classes towards a balanced
configuration. The adjustment of opponents for individual
classes, based on the proficiency distribution of its players, has
proven to detect configurations that end up in a more balanced
outcome (see Fig. 7 as compared to Fig. 5). While this

Ranger

Gladiator
Templar
Assassin

Sorcerer
Spiritmaster
Gunner

Fig. 8. Tllustrated outcome of the DPBM-driven PvP simulation. On average,
players of Melee classes outperform Rangers, which themselves counter
Magic classes, which eventually beat Melee classes. Heal classes are domi-
nated by Rangers and Magic classes, but can withstand Melee.



method yields promising results in terms of balanced viability
for single-player games or solo dungeons, its adjustment is
not trivially applicable to group PVE situations, since the
opponents are only tailored to a single class and the interaction
between classes further confounds the attunement. A more
comprehensive regulation method would be the adjustment of
in-class parameters, such as their own offensive or defensive
values or particular skill values. Yet, this would significantly
influence the interaction between the classes and might harm
the likely intended rock-paper-scissors scheme within. If aim-
ing for equal proficiency of all classes against each other, an
iterative procedure of attunement and re-simulation would be
expedient, in that the largest proficiency mismatch between
classes is detected, adjusted in favor of the inferior class
and affected matchups are re-simulated, reiterated up to a
predefined threshold.

Based on the empirical evidence presented, our previously
posed research questions can be answered as follows:

o Significant imbalances between in-game classes can be
detected through DPBM within PvE and PvP.

o Design specifications can be established via regulation
based on DPBM-driven simulation results.

VII. LIMITATIONS AND FUTURE WORK

During the implementation of this approach, different con-
straints and assumptions had to be taken into account that
eventually lead to a number of limitations. Perhaps most
importantly, classes (especially in MMORPGs) are often de-
signed to vary in versatility within different situations or
against different classes. This includes classes that benefit
greatly from party-play versus classes that are tailored for
single-player situations, those who focus on dealing damage to
many enemies instead of single targets or not dealing damage
at all (being busy with tanking, healing or supporting other-
wise). Nevertheless, the presented technique is not constrained
to damage dealing, but overall one-on-one versatility. DPBM
can quantify these differences to inform game developers
whether their intended design aligns with the actual outcomes
of a population playing it. Evidently, this requires data from
a player population to employ the testing procedures, which
limits its versatility before the game’s launch. However, it is
applicable for never-ending balance observations (and predic-
tions) and for benchmarking novel challenges introduced with
later patches or DLCs. Apart from generalization or random
play in the PvE evaluation, an optimally playing agent (e.g.
by self-training/reinforcement learning) would be an additional
interesting candidate, to compare if this approach is closer
to the real population. To filter out the influence of different
attribute stats, we normalized equipment and other relevant
configurations throughout all characters. A closer (yet very
temporary) approximation of the overall population capability
could be realized with this approach if the equipment range
was taken into consideration. Eventually, player models in the
PvP evaluation were driven by the same behavior, independent
of their opponent, since this behavior was only trained on data
stemming from battles against their own class [17]. This likely

distorted the results and should be repeated when enough data
of the respective situations are given; however, it does not
diminish the potential of DPBM.

For future work, we primarily seek to refine behavior
modeling by introducing more variables, such as global move-
ment information (encompassing higher level goals) or the
estimation of individual players’ precision and their temporal
cognitive computation demand. Apart from the constraint of
two dimensions (attack and defense), the challenge of the
PvE encounters can further be examined by altering the skill
sets, decision making or movement behavior of enemies. The
simulations themselves can likely be sped up by calculating
battles without graphical representations. Eventually, the ap-
plicability of this approach will be investigated with respect
to significantly more complex multi-player situations, such as
in adjusting boss battles for a population (PvE) or simulat-
ing large-scale competitive sieges (PvP), throughout multiple
player experience evaluations. Furthermore, if a mapping
from mere behavioral patterns to in-game proficiency can be
constructed, this prediction might augment matchmaking (for
both PvP and PvE) bringing together players with approximate
skill levels more accurately.

VIII. CONCLUSION

Balancing in-game parameters and classes to ensure diverse
viable choices for players is a challenging, time-consuming
and toiling expense for game developers. While traditional
approaches employ expert analysis, excessive human play-
testing and persistent debates with the community, this paper
introduces the use of an individual generative player modeling
technique (DPBM) for automating game balancing. Using a
dataset of 213 players that visited a single-player dungeon of
the MMORPG Aion over the course of six months, we we
generated individual agents replicating human play behavior.
Within the context of one-on-one PvE battles, we detected and
sufficiently regulated significant effects between classes. For
the interaction between classes, a PvP evaluation among all
players revealed a rock-paper-scissors-like interaction scheme
that is likely to resemble the original developers’ design. The
proposed approach is able to inform game development about
PvE and PvP imbalances quantitatively and provide empirical
evidence that player behavior entails a degree of individual
proficiency.
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