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Abstract—Recent procedural content generation via machine
learning (PCGML) methods allow learning from existing content
to produce similar content automatically. While these approaches
are able to generate content for different games (e.g. Super
Mario Bros., DOOM, Zelda, and Kid Icarus), it is an open
question how well these approaches can capture large-scale visual
patterns such as symmetry. In this paper, we propose match-
three games as a domain to test PCGML algorithms regarding
their ability to generate suitable patterns. We demonstrate that
popular algorithms such as Generative Adversarial Networks
struggle in this domain and propose adaptations to improve
their performance. In particular, we augment the neighbourhood
of a Markov Random Fields approach to take into account not
only local but also symmetric positional information. We conduct
several empirical tests, including a user study that show the
improvements achieved by the proposed modifications and obtain
promising results.

Index Terms—procedural content generation, machine learn-
ing, global patterns, generative adversarial networks, markov
random fields, Candy Crush Saga

I. INTRODUCTION

One approach to generating game content is training a

machine learning (ML) model on available examples, and then

sampling from the trained model for new game content that

is similar to the original examples. This approach, generally

referred to as Procedural Content Generation via Machine

Learning (PCGML) [1], assumes that the ML algorithm will

learn the appropriate invariants of the provided content, so

that samples from the learned model retain the “style” of the

original while introducing variety. For example, for platform

game levels, you would want the model to learn the maximal

lengths of gaps it can generate to still obtain playable levels,

but to also introduce new challenges and scenarios (e.g.

combinations of gaps) not found in the original levels.
Given that PCGML is a relatively recent research topic, it

is perhaps not surprising that little research has been done

on which invariants of the training contents are learned, and

how to make the system learn the most relevant ones. In this

paper, we investigate which types of patterns are captured by

models trained on a large set of levels, and methods to capture

more relevant patterns. We also provide a taxonomy of such

methods in order to help structure research in this direction.
To test our methods we use levels from the mobile casual

puzzle game Candy Crush Saga (CCS). Casual puzzle games

as a genre are well-suited to PCG in general and PCGML in

particular, given the huge demand for level content; e.g. more

than six thousand levels have been made for CCS. Just like

in many other game genres, the quality of the levels is crucial

to keep the player engaged. Interestingly, it is also a game

genre for which, to our knowledge, few PCG studies and no

PCGML studies exist in the literature.

Our results suggest that existing PCGML methods mostly

focus on local patterns and are unable to reproduce global fea-

tures such as symmetry. However, we find certain methodolog-

ical advancements such as incorporating symmetric neighbours

into Markov Random Fields, improve the methods. While

these results are promising, consistently generating levels with

the same complex local and global patterns as in the existing

CCS levels is an important future research direction.

II. BACKGROUND

A. Patterns in Games

The term pattern has different connotations in different

domains, but it generally describe regularities within a given

object. In the context of frequent pattern mining, this mean sets

of items, sub-sequences or sub-structures that occur multiple

times. In the context of generation of abstract images, patterns

have previously been classified as symmetry, repetition, and

repetition with variation [2]. In games, the most prominent

use of patterns is in game design patterns [3]. Game de-

sign patterns can take many shapes, including rather abstract

patterns related to the overall game design, which we do

not consider here. There are also more fine-grained patterns,

including various spatial features observed in games such

as first-person shooters [4] and platformers [5]. The type of

patterns we address in this paper are fine-grained and visible

spatial patterns, in particular relations between tiles.

While humans seem to have an intuitive understanding of

what a visual pattern is, it is challenging to provide a general

formal definition. In addition, games are ultimately made for

humans – a formal definition that does not align with human

perception thus would not be meaningful. Here, we choose to

mainly rely on a user study to identify patterns accompanied

by a simple context-specific description of the concept.

In particular, we focus on Candy Crush Saga (CCS), which

is a free-to-play match-three puzzle game released by King1

in 2012 and has since enjoyed major success as one of the top

mobile casual games2. In CCS, three or more candies (tiles)

1https://king.com/
2data source: appannie.com
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(a) Local patterns (b) Global pattern

Fig. 1: Illustrative examples of patterns in synthetic CSS levels.

can be matched horizontally or vertically with neighbouring

candies of the same colour [6]. When matched, candies

disappear from the board. If there are no obstructing items, this

causes existing candies to fall from the top and fill the resulting

gaps, and new candies with random colours to be spawned

(usually at the top of the board). The game introduces various

constraints, obstacles and objectives that together define each

level and thus create puzzles of varying difficulty. In the

context of CCS, we use the terms:

• Global pattern: A pattern that can only be identified by

looking at spatial structure of all elements on the board.

• Local pattern: A pattern that can be identified in a small

area of the board.

CCS levels often exhibit global patterns commonly consid-

ered aesthetically pleasing or interesting to the human eye.

Examples include placing items on the board in recognisable

shapes or in symmetric arrangements (cf. Figure 1b). There

are also levels which repeat smaller, local patterns. A common

example is that candies with additional beneficial effects are

enclosed by obstructing items, making them harder to use

(Figure 1a). Levels can display both local and global patterns.

The global aspect of CCS is different from standard appli-

cations of PCGML, such as Mario, where local tile neighbour-

hoods define the primary game elements (gaps, pipes, enemy

groups). For this reason, we propose it as a test domain for

PCGML algorithms to assess their ability to replicate different

types of patterns, including local and global ones.

B. Patterns in PCGML

Algorithms performing Procedural Content Generation via

Machine Learning (PCGML) [1]) directly employ machine

learning models as content generators for games. At its core,

PCGML is applied to learn invariant patterns from a set of

examples. The type and scale of patterns captured are largely

determined by the underlying machine learning approach, the

training data, and its representation. The majority of existing

PCGML techniques represent the data and patterns as local

relationships between small scale elements either sequen-

tially [7]–[10] or as local neighbourhoods [8], [11]–[14]. These

approaches have been shown to capture local patterns and

small structures from the provided training data (e.g. pipes

in Super Mario Bros. [7], [12], or pits with water in a generic

platform game [11]). However, the ability of these approaches

to reproduce and model larger scale and global patterns is

typically not explored. Instead, computational metrics (e.g.

linearity and leniency [7], [8]) are used as proxies for global

patterns. In this paper, we are interested in exploring the

performance of these local models in domains where global

patterns are a major aspect of the game.

A variety of extensions to local models have been developed

to capture larger scale patterns better. Some have explored the

idea of defining patterns explicitly either through clustering of,

e.g., 3× 3 tile structures from levels [15] or through training

models on expert labelled patterns [16]. Others modified the

generation step of the models to adhere to defined objectives

and constraints [17], [18]. Lastly, some have tried capturing

larger patterns by modelling levels at multiple resolutions or

employing hierarchical models [15], [19]–[21]. While these

extensions capture particular larger patterns or features, they

are limited in what they each can capture; each extension

was developed and tested with regard to specific patterns

or features (e.g., 4 × 4 tile structures [15], item and enemy

distributions [17], playability [18]).

A number of PCGML techniques have been proposed that

try to learn from the entirety of a level (or large sections)

at once. Lee et al. [22] train Deep Convolutional Neural

Networks on full StarCraft 2 maps to predict resource place-

ment. Their model is trained on full maps but is meant to

learn a specific feature and not a model of a full level.

Autoencoders have been used for modelling and blending

large sections from platforming levels [23]. However, they

also rely on level features such as linearity and density as

proxies for the global patterns. Shaker et al. [24] present a

non-negative matrix factorisation approach that splits the levels

into different layers corresponding to level structure and object

placements. However, this approach is evaluated with level

features as proxies to evaluate whether patterns are reproduced.

III. TOWARDS PATTERN-AWARE PCGML

As detailed above, most existing PCGML algorithms focus

on capturing local patterns in games content. However, as we

demonstrate in Section V, this does not necessarily ensure gen-

erating global patterns we see in typical CCS levels (Figure 3),

such as symmetry. In the following, we present an overview

of adaptations to improve existing PCGML methods in this

regard. Three main approaches are identified, each of which

relies on varying degrees of domain knowledge.

A. Enriching the Data

One way to encourage the generation of specific types of

patterns is to enrich the data used for training. An explicit

way of doing so is by labelling each example with the type of

global pattern displayed. Conditional GANs [25], for example,

are well suited to handle this kind of data. Models can also be

trained on each class separately. Both options aim to strengthen

the signals around global patterns that are present in the data.

We investigate the latter option in this paper (Section IV-D).

A data-driven approach to enrich data could be to identify

class labels automatically using unsupervised learning. If



limited labelled data is available, a corresponding approach

with a classifier that encodes a learned bias is also possible.

B. Augmenting the Algorithm

Many of the algorithms discussed in Section II-B only take

into account neighbouring patterns. Apart from enriching the

training data, one strategy to improve a local model is to

augment the algorithm to ensure it focuses on the desired

patterns. If domain knowledge is available, this can be done

explicitly by modifying the structure of the model to detect

the desired patterns. For example, to generate outputs with

symmetry, we can add positions that should be mirrored at a

given position as input to the algorithm. We test this approach

using MRFs as a baseline algorithm.

Another approach is to feed measures describing desired

features (e.g. a symmetry score) to the algorithm, so that

recognising the fitness of an individual based on desired fea-

tures is facilitated. This can be done e.g. by giving additional

inputs to a GAN’s discriminator. While these approaches

are likely good at producing content exhibiting the desired

features, they are heavily reliant on domain knowledge and

the ability to characterise the features numerically.

Instead of relying on domain knowledge, another approach

is to ensure that the input at least allows the algorithm to

make connections between items at the scale of the desired

global pattern. Examples of this data-driven approach could

be adding a fully-connected layer as the first layer of the

discriminator in a GAN. Another promising approach is adding

the position of each input (e.g. as coordinates) to the input of

a neural network. This has been explored before in the context

of CPPNs [26], GANs [27], and their combination [28].

Between these two extremes lie approaches with a learned

bias. Such a bias can be learned through labelled samples

or adversarial training and then given to the model as an

additional input. An example would be attention layers for

a neural network as proposed in [29].

C. Filtering the Solutions

A third approach is filtering solutions, which is most

straightforward if done explicitly, but it is conceivable to

learn desired patterns and ways to identify them. Filtering

can be executed at different times during the training process.

Before training would mean creating a representation that only

encodes solutions with the desired global patterns. In the case

of symmetry, only half of the level could be generated and

automatically mirrored to construct the final level. Repairing

solutions to adhere to patterns (e.g. through mirroring) is also

possible during or after training. A further option for filtering

after training is applying a search algorithm to the space of

generated content, e.g. latent vector evolution for GANs [12].

IV. EXPERIMENTAL SETUP

In this paper, we evaluate state-of-the-art PCGML methods

with regard to how well they are able to capture global

and local patterns in a game. We extend this evaluation to

several adaptations discussed in Section III. We apply two

popular PCGML techniques, namely Markov Random Fields

(MRF) [8] and Generative Adversarial Networks (GAN) [12],

[19], [30] to CCS level generation. As argued in Section II-A,

CCS levels exhibit several patterns at different scales. This

review of the state-of-the-art is not exhaustive and only

intended as an illustration of the potential shortcomings of

popular methods on games like CCS.

In the following, we describe our experimental setup in-

cluding the representation we use for CCS levels and the

algorithms employed.

A. CCS Level Representation

CCS contains approximately 80 game elements with differ-

ent characteristics. Some levels rely on unique mechanics or

game elements, which makes them difficult to replicate. For

this reason, with the help of experts, we selected a subset of

published CCS levels that are more homogeneous. We selected

only levels from a specific game mode (Jelly3) and discarded

levels containing complex dynamic elements such as frogs and

conveyor belts, resulting in the 504 levels we used in our

experiments. There are still 51 unique items present in the

reduced set of levels. Some items can be stacked on the same

cell in the board, and we found 789 unique item stacks.

Most state-of-the-art PCGML approaches for tile-based

content generation (Section II-B) are not equipped to scale up

to this number of different tiles without incurring high com-

putational costs. Thus, we introduce an abstract representation

for CCS levels to reduce the representation complexity based

on domain knowledge:

• SHAPE: Indicates which game board cells are non-void.

• REGULAR: The six types of regular candy that can be

matched with other candies of the same colour.

• SPECIAL: Match-able items with additional effects

• BLOCK: Items that obstructs matches by occupying a cell

• JELLY: Items indicating cells where matches need to

occur to win the level in Jelly game mode.

• LOCK: Items that obstructs matches by restricting the

movement of items in the same cell

With the six categories mentioned above, each level is repre-

sented by a matrix with dimensions 9× 9× 6. We use binary

encoding to represent the occurrence of an item category in a

given cell. However, in order to be able to ensure the validity

of the generated CCS levels, we introduce the following post-

processing method for the GAN-based approaches.

The first four layers cannot coexist in the same cell. The

choice for each cell is determined by selecting the layer with

the highest value.4 However, if none of the values is higher

than a threshold (0.5 in this case), the cell is indicated empty.

Locks are allowed to be placed only on cells that are not void

or empty, and jelly is only placed on cells that are not void.

Additionally, in order to keep the complexity of the level

representation low, we add the following mandatory post-

processing steps to all levels in this experiment, including

3https://candycrush.fandom.com/wiki/Jelly levels
4In case of ties, the order determines which layer is selected.



original ones: (1) Candies are spawned through candy cannons.

Candy cannons are not included in this representation, so

they are automatically placed above non-void cells in order to

ensure that new candies are dropped. (2) Additional, complex

dynamic elements such as portals and special candy cannons

are removed from the game to avoid introducing unnecessary

complexity. (3) As this paper focuses on visual patterns, we

do not include further game meta-data such as the number of

available moves in the representation.

B. Algorithms

This section introduces two baseline algorithms and our

proposed extensions to them. We chose Markov Random

Fields because they learn strictly local patterns, and GANs

because they should be able to capture global patterns, as

demonstrated in their application to face generation.

Markov Random Fields (MRFs) [31] are undirected graph-

ical models that have been used extensively in texture synthesis

and repair [32], [33]. MRFs model relationships between

neighbouring positions (e.g., connected nodes in graphs or

nearby pixels in textures). We build on previous work on level

generation that used MRFs [8], in which the authors represent

a level using a grid of tile types corresponding to different

level elements (e.g., solid objects, empty space, items, etc.),

and treat the four surrounding positions in the grid as the

neighbourhood of the MRF. This setup allowed the MRF to

learn a conditional probability distribution (CPD) describing

the probability of tile types at a position given the tile types

of the neighbouring positions (Figure 2a). We replicate this

setup for our local MRF. To use this model with CCS,

the six-layer representation is collapsed into a single-layer

representation; the value at a position is the concatenation of

values in each layer. In this way, each possible combination of

values for the six layers is treated as a distinct tile type. For the

global MRF model, the neighbourhood of the local MRF is

modified by adding the vertically and horizontally symmetric

positions relative to the current position to the neighbourhood.

Figure 2b shows an example of this modified neighbourhood.

By including non-local positions, we hypothesise the MRF will

better capture global patterns such as symmetry. Other MRF

extensions have tested longer-range [34], [35] and adaptive

neighbourhoods [36]; but to our knowledge, this is the first

time MRFs have been extended with symmetric neighbours.

Generative Adversarial Networks (GANs) are a class

of unsupervised machine learning methods where two neural

networks, a generator and a discriminator are trained in an

adversarial setting [37]. The generator attempts to generate

realistic data examples and the discriminator has to judge

whether data examples come from the generator or a dataset of

real examples. The Deep Convolutional GAN (DCGAN) [38]

applies convolution and deconvolution to the discriminator and

generator to enhance the results on image data. We build a

DCGAN using MarioGAN [12] trained on levels from Super

Mario Bros. The input data for MarioGAN was structured as

32×32 patches with one channel for each tile type (air, ground,

etc.). In contrast to MarioGAN, we use 3×3 filters instead of

Fig. 2: The neighbours used in our local Markov Random Field

approach (left), and in our global MRF approach that includes

vertically and horizontally symmetric positions (right). White

indicates the current position, blue indicates positions the cur-

rent is conditioned on, and red indicates independent positions.

4× 4 and produce 9× 9 patches, which in the case of CCS is

the entire level. All other hyper-parameters are kept the same.

Each model is trained for 5, 000 epochs. We hypothesise that

modifying the discriminator to use 9× 9 filters would enable

it to learn kernels that capture global patterns. Ideally, two

streams of convolution could be employed, one with 9 × 9

filters for global patterns and one with 3 × 3 filters for local

patterns. For simplicity, we employ just one stream of 9 × 9

filters in the discriminator in the variant we call GlobalGAN.

C. Evaluation

Our evaluation focuses on identifying whether visual pat-

terns present in the training data are found in generated

levels. In particular, symmetry is evaluated as an example of

a recognisable global pattern. We focus on symmetry as it is

a common global pattern and is identifiable both visually and

computationally. Still, as human perception can diverge from

computational measures, we also conduct a user study.

1) Visual analysis: As we are targeting aesthetic patterns,

a visual inspection of samples of generated levels is suitable

in this case. Here, we use it to manually pre-screen promising

generators to be evaluated further in the user study.

2) Computational Measures: Horizontal, vertical, and di-

agonal line symmetry (also known as reflection or mirror

symmetry) are measured. These measures are chosen to cap-

ture level design preferences. Symmetry scores correspond to

the ratio of positions on the board that are identical to one

of their symmetric counterparts. For the diagonal symmetry

score, both diagonal symmetry lines are considered at the

same time, such that a position has to be identical to just

one of the symmetric counterparts to count towards the score.

Positions are considered to be identical if all layers are equal

(see Section IV-A). Our data set of CCS levels has a median

of 100% vertical symmetry and 55.6% horizontal symmetry.

3) User study: We conducted a user study among experts

to identify and evaluate patterns that are not measurable

computationally. In the following, we describe the design of



the questionnaire distributed among King employees.5

The participants were presented with a short explanation

and several examples of what global and local patterns mean

in the context of this study (cf. Section II-A). All levels were

visualised using the original CCS sprites (see Figure 3). Based

on this definition, participants were asked the questions below:

1) Indicate all levels that contain a global pattern (check-

boxes next to level images).

2) Indicate all levels that contain one or more local patterns

(checkboxes next to level images).

3) Which level looks less like a CCS level? (pairwise

comparison of two level images)

4) Questions about experience of the participant in level

design and game mechanics (multiple choice.)

D. Research Questions

We specifically want to investigate two types of adaptation

suggested in Section III, namely explicit algorithm augmenta-

tion and explicit data enrichment.

RQ1: Does extending the neighbourhood of an MRF

improve its ability to produce global patterns? To answer this

question, we compare our extended MRF (GlobalMRF) with

the standard MRF (LocalMRF).

RQ2: Does training a GAN on only a single type of

global pattern improve its ability to produce this pattern? We

compare generators trained with the GlobalGAN architecture

- one on the full set of levels (GlobalGAN), one on only

vertically symmetric ones (GlobalGAN-vert).

We add original levels from CCS as baselines (Original1

and Original2). The original levels are converted to the same

level representation as described in Section IV-A in order to

ensure comparability. Each generator produced 1, 000 levels

for visual and computational analysis. For the survey, we

select three levels from each dataset, which are the levels

with minimal, median and maximal vertical symmetry score

(defined in Section IV-C2), respectively. This is intended to

ensure that some, but not all levels, adhere to the most common

and very obvious type of global pattern, i.e. vertical symmetry.

V. RESULTS

A. Visual Analysis

For each dataset we visually analyse the level generators.

Here, we specifically focus on the generators’ ability to create

vertically symmetric levels. We choose to analyse the best-case

scenario here, thus cherry-picking the level with the maximum

vertical symmetry score for each set of levels (Figure 3).

Exact local patterns are difficult to detect in all the levels.

However, in all generated levels (Figures 3a-3d), locks and

blockers appear in groups instead of on their own. This is a

local pattern reflected in the original levels as well (Figures 3e-

3f). This was expected as all methods have previously been

shown to be able to reproduce local patterns (cf. Section II-B).

5The full questionnaire can be accessed at
https://forms.gle/nwAyPqckAZiEvBbr7.

(a) LocalMRF (b) GlobalMRF

(c) GlobalGAN (d) GlobalGAN-vert

(e) Original1 (f) Original2

Fig. 3: Visualisation of most vertically symmetric CCS level

from each set of levels.

The generated levels (Figures 3a-3d) do show recognisable

vertical symmetry. While the addition of information (RQ1:

GlobalMRF vs. LocalMRF) seems to improve the generator’s

ability to generate symmetric levels recognisably, the differ-

ence seems to be less stark when enriching the data (RQ2:

GlobalGAN vs. GlobalGAN-vert).

The results suggest that the generators are able to capture

some global patterns (namely vertical symmetry), but not

consistently. No other global patterns were observed, but it

is unclear whether this is due to the small sample size.

B. Computational Measures

As the above analysis is anecdotal, we seek to validate the

results using computational measures, i.e. symmetry scores as

defined in Section IV-C2. To this end, we generated 1 000

levels with each generator and computed their symmetry

scores. The resulting scores are shown in Figure 4, together

with the symmetry measures computed for the original levels.

Most of the original levels are vertically symmetric, with

some apparent variety (Figure 4a). This variety is even bigger

across the other symmetry dimensions (Figures 4b and 4c).

The generators are able to learn from this data and create

individual levels with reasonable symmetry scores. However,

their symmetry score distributions are vastly different from the

training level - showing much less variety and lower scores



across the board. Adapting PCGML methods so they can also

capture the variety of original levels along several dimensions

would be an interesting direction for future research, for exam-

ple, by guiding the sampling of original levels appropriately.

Notice that LocalMRF has very low scores for horizontal

and vertical symmetry, as is expected given the strictly local

neighbourhood of the model. It is, however, slightly better in

terms of diagonal symmetry. This could be a result of a cascad-

ing effect caused by sampling with the local neighbourhood,

but further investigation is needed.

RQ1: Extending the neighbourhood with symmetric

neighbours (GlobalMRF) noticeably increases the symmetry

scores along the horizontal and vertical axes. Diagonal in-

formation was not added, resulting in a decreased diagonal

symmetry score. This highlights a potential problem with this

type of adaptation - only global patterns that are explicitly

captured will be encouraged with this method, while others

(diagonal symmetry in this case) could be negatively affected.

We leave further exploration of this for future work.

RQ2: The GlobalGAN shows average scores across

the board, and a definite improvement in vertical symmetry

is achieved by training only on vertically symmetric levels

(GlobalGAN-vert). The vertical scores also vary less, but still

quite considerably. However, the score improvement is not

major, which may be because most original levels are already

vertically symmetric. The performance in other symmetry

dimensions is not affected. This suggests that the vertically

symmetric levels show sufficient variety to be able to capture

other types of symmetry. If the resulting sample was too small

or too homogeneous, we would likely see adverse effects.

Further work is needed to confirm this conclusion in general.

C. Survey Results

We obtained 60 responses from King employees to our user

study. We received answers from people working on various

games, of which 63% work on match-three games and almost

40% work on CCS specifically. The participants have different

roles in the company, with 14 working in level design.

The original levels have more recognisable global patterns

according to the study. This aligns with our results from both

visual and computational analysis. The generators are mostly

not able to produce global patterns (Figure 5a) except for

GlobalMRF which creates levels with a comparatively high

vertical symmetry (Figure 4a), reflected also in the study

results.

The distinction is far less clear when it comes to local

patterns (Figure 5c). Local patterns were recognised much less

often than global ones across all levels. The original levels

mostly still have an advantage, but GlobalMRF is a close third.

Note, however, that human perception is influenced by

visual aspects such as colours. So in some cases, structural

patterns may exist, but are not easily recognisable by a human.

We tested this by adding levels to the questionnaire that

were deliberately constructed to contain a specific pattern. For

example, even though a global pattern is clearly identifiable in

Figure 6a, it is not very noticeable when visualised as a CCS

level (Figure 6b). As a consequence, only eight participants

indicated that they saw a global pattern in the level.

We conclude that humans are not always able to explicitly

identify patterns. For the evaluation of our research questions,

we thus relied more on pairwise comparisons that only require

intuition instead of an explicit detection of patterns.

RQ1: In the pairwise comparison as depicted in Fig-

ure 5b, we can clearly see that most respondents considered the

LocalMRF levels less likely to be CCS levels when compared

with GlobalMRF. In both cases most respondents identify the

generated level as dissimilar from CCS levels when compared

with an original level. Still, based on this data, some of the

respondents could see generated levels be part of the corpus

of CCS levels, even when compared with originals. Levels

from the augmented algorithm GlobalMRF were preferred

more often. We conclude that adapting the MRF algorithm

by adding symmetrical inputs improved its ability to create

global patterns that make them recognisable as CCS levels.

RQ2: The pairwise comparison (Figure 5d) is also

favourable for the adaptation here, GlobalGAN-vert when

compared to the baseline algorithm GlobalGAN. The adap-

tation is detected as an atypical CCS level less often. We

thus also deem this adaptation to be beneficial for creating

recognisable global patterns.

VI. DISCUSSION

Based on our visual, computational, and survey results, we

conclude that the implemented adaptations are indeed benefi-

cial in improving the underlying algorithms’ ability to produce

recognisable global patterns. However, our main intention in

this paper is not to promote a specific adaptation, but to

demonstrate the untapped potential for improving existing

PCGML methods specifically with regards to their ability to

produce global patterns. This is a claim we can make, even

if our exact results are not necessarily generalizable across

applications and / or PCGML algorithms. We assume that

adaptations suitable for GANs should also be suitable for other

neural network-based approaches (Variational Autoencoders,

Convolutional Neural Networks) and would expect similar

results. Sequential models (Markov Chains, Long Short-Term

Memory networks) probably require more specific adaptations

(like GlobalMRF), because generation and modelling take

place in sequence. However, as shown in this paper, encoding

domain knowledge can greatly improve the obtained results.

Our observations regarding the fact that GANs seem not to

be able to produce symmetric levels consistently are interesting

because one of the algorithm’s most popular applications

is generating faces which usually display imperfect vertical

symmetry. We investigated whether a lack of consistent sym-

metric training signal in CCS could explain this by training

on vertically symmetric levels exclusively. While we observed

small improvements in this regard (Figure 4a), this explanation

evidently does not fully account for the lack of symmetry

in the output. There are a number of potential explanations,

but one avenue that should be investigated more is how the

discretisation of the level representation (Section IV-A) affects
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(a) Vertical symmetry scores.
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(b) Horizontal symmetry scores.
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(c) Diagonal symmetry scores.

Fig. 4: Boxplots of symmetry scores of each set of levels. All generators are able to create more or less symmetric levels,

with the GlobalMRF being able to create vertical and horizontal symmetric levels better than any other approach. The vertical

symmetry scores of the GAN approach can be improved slightly by exclusively training on vertical levels.
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Fig. 5: Questionnaire results. (a, c) Participants were presented with three levels from each method with the minimal, median

and maximal vertical symmetry score. GlobalMRF is better than any of the other methods but the original levels still contain

more recognizable global and local patterns. The pairwise comparisons between the different methods (b, d) show that levels

generated by GlobalMRF are more likely considered CCS levels than any of the other approaches but are still considered to

look less like CCS levels than the original levels.

(a) Abstract Representation (b) Visualisation in survey

Fig. 6: Validation example from the questionnaire. While

specific patterns are clearly visible when shown in colour (a),

they become less obvious when shown as game tiles (b).

the output. GANs have been applied to level generation in

various tile-based games, all requiring such discretisation.

A more general observation based on our list of potential

pattern-aware adaptations to PCGML algorithms in Section III,

is that they all require varying levels of domain knowledge.

However, even domain experts have difficulty identifying

patterns (cf. Section V-C). It is thus important to consider

that such required domain knowledge might not always be

available when applying a PCGML algorithm. This result

also highlights the importance of testing PCG approaches

on different domains in order to be able to assess them

independently of potential unconscious biases in the training

data and / or algorithms. We are looking to confirm our results

on other games where (1) non-exact patterns are important

(like imperfectly symmetric faces) and that (2) have reasonable

complexity so the application of PCGML is warranted.

Further, several of the pattern-aware adaptations mentioned

in Section III resemble some techniques from other machine



learning domains. It therefore seems worthwhile to investigate

further which other adaptations are made in related fields that

operate on data with patterns.

Additionally, it is important to note that evaluating generated

content in PCG computationally is still an open challenge.

This is especially true if the measure is intended to target

something that is not easily formalised and / or relies on

human perception. Even visual patterns, as targeted in this

paper, proved difficult to evaluate despite the fact that humans

do not need to play the game to identify them.

Lastly, this paper focused only on visual patterns, i.e.

patterns observable from the representation of the generated

content. However, ultimately, the goal of PCGML is to create

content that not only looks, but also plays similarly to the

given set of levels. It is thus important to study further how

visual patterns relate to gameplay patterns in different game

genres. We also plan to conduct a deeper investigation on the

expressive range of different PCGML methods.

VII. CONCLUSIONS

The results in this paper suggest that match-three games

such as CCS provide a challenge for current state-of-the-

art PCGML methods since they often include larger scale

(global) structural patterns. Several different ways to improve

existing methods were outlined, and some investigated fur-

ther. The implemented adaptations proved to be successful

in our experiments, and related research questions should

be pursued further. However, significant work remains to

be done, especially for generalising, formalising, extending

and rigorously testing pattern-aware adaptations of existing

PCGML algorithms. In addition, we plan to explore further

characterisation and similarity measures to pick up on global

and local patterns while minimising the required domain

knowledge. It would be interesting to investigate further how

the discrete representation of the generated content affects the

performance of the respective algorithm, especially for GANs.

Lastly, we plan to study whether levels with similar visual

patterns also result in similar gameplay.
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