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Abstract—The positional game of Order versus Chaos can
be considered a maker-breaker variant. The players Order and
Chaos take turns placing circles or crosses on a board, in which
the goal of Order is to create a consecutive line of identical
symbols of a certain length, while Chaos aims to prevent this.
In this paper, we provide some theoretical results on winning
strategies for both players on finite boards of varying sizes, as
well as on infinite boards. The composition of these strategies was
aided by the use of Monte-Carlo Tree Search (MCTS) players, as
well as a SAT solver. In addition to these theoretical results, we
provide some more experimental results obtained using MCTS.

Index Terms—Order and Chaos, Positional games, Maker-
breaker games, Monte-Carlo Tree Search, Satisfiability

I. INTRODUCTION

The game of Order versus Chaos is a maker-breaker-like
positional game [1]. In the original game ‘Order and Chaos’,
as proposed by Stephen Sniderman [2], two players, named
Order and Chaos, take turns placing either a circle or a cross
on a 6 × 6 board. Both players are allowed to place either
symbol on an empty square. The goal of Order (maker) is
to create a horizontal, vertical or diagonal line of (at least)
five identical symbols, while the goal of Chaos (breaker) is to
prevent this whilst filling the board.

The original version of the game was solved by Benjamin
Turner using a brute-force approach [3], showing that Order
wins playing first. In this paper, we will discuss a more sophis-
ticated strategy solving the original game. In order to find this
strategy, we constructed two artificial players using Monte-
Carlo Tree Search (MCTS) simulations, a popular method
for solving combinatorial or positional games [4]. Analyzing
the moves prescribed for Order by the MCTS algorithm, we
distilled an explicit rule-based strategy.

Moreover, we consider larger games, in which the objective
for Order is to make a line of more than five in a row. For
winning lines of length at least 9, we model our problem as
an instance of the Satisfiability (SAT) problem, for which fast
solvers are available [5]. We prove constructively that Chaos
always wins if Order needs to align at least 10 symbols, and
that Chaos wins if Order needs to align 9 symbols and the
amount of squares on the board is of suitable parity.

For games in which Order needs a line of length 6, 7 or 8
to win, we prove that Chaos wins if the board is not much
larger than the line to be made. Moreover, we use more MCTS

simulations to explore these games, conjecturing that these
games are winning for Order if and only if the board is large
enough.

We start by introducing some notation. Throughout, we
denote [n] = {1, . . . , n} for any natural number n. A board is
a finite set B ⊆ Z2 and a game state of B is a map B → S,
where S = { , , } is the set of symbols with denoting an
empty square. For s = , we define s = , and vice versa. A
line is a set of the form {(x, y) + k · (a, b) | 0 ≤ k < m}
for some (x, y) ∈ Z2, m ∈ Z>0 and non-zero (a, b) ∈
{−1, 0, 1}2, and we call m the length of this line. We call
a line L homogeneous if either f [L] = { } or f [L] = { },
where we write f [L] = {f(x) | x ∈ L}. The players are Order
and Chaos.

For a board B, a positive integer m and a player p we
define the game ovc(B,m, p) as follows. The players take
turns starting with player p and as initial game state f the
empty board, i.e., f(b) = for all b ∈ B. If the board
is full, i.e., 6∈ f [B], the game ends. Otherwise, a turn
consists of choosing some b ∈ B with f(b) = and updating
f at b such that f(b) = or f(b) = . In accordance
with the terminology for maker-breaker games, We call a line
L ⊆ B of length m a win line. We say f is in order if there
exists a homogeneous win line. If f is in order at the end of
the game, then Order wins, and otherwise Chaos wins. The
traditional version of Order versus Chaos is thus defined by
ovc([6]2, 5,Order).

We similarly define the game ovc′(B,m, p) where the
starting player p each turn in addition to his or her usual
moves is allowed to pass, i.e., skip their turn. We study this
game because it has nice properties with respect to inclusion
of boards.

Lemma I.1. Write X � Y for ‘Order wins X implies Order
wins Y ’. Let A ⊆ B ⊆ C be boards, p a player and m > 0.
Then

ovc′(A,m,Chaos) � ovc′(B,m,Chaos) � ovc(B,m, p)

� ovc′(B,m,Order) � ovc′(C,m,Order).

The winning result for Order is summarized as follows.

Theorem I.2. Let B be a board containing [n]2 for
some n. Then Order wins ovc′(B,m,Chaos) for (m,n) ∈
{(1, 1), (2, 2), (3, 3), (4, 4), (5, 6)}.
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The result for Chaos for long win lines is as follows.

Definition I.3. For parameters (B,m, p) we say the game
ovc(B,m, p) has good parity if |B| is even when p is Order
and |B| is odd when p is Chaos.

Theorem I.4. Let B be a board and let p be a starting player.
Then

(i) Chaos wins ovc(B,m, p) for all m ≥ 9 when the game
has good parity.

(ii) Chaos wins ovc′(B,m,Order) for all m ≥ 10.

Clearly, good parity can be obtained by passing the first
turn, so assuming Theorem I.4 we have that Chaos wins
ovc′(B,m,Chaos) for all boards B and m ≥ 9.

For small boards, we have the following result for Chaos.

Proposition I.5. Chaos wins ovc′([5 + 2m]2, 5 + m,Order)
for all m ≥ 0 .

We prove Lemma I.1 and discuss some more subtleties
considering passing in Section II. In Section IV, we construc-
tively prove Theorem I.2, using a strategy inspired by MCTS
play. This explicit rule-based strategy leads to a win for Order
starting from the empty board, therewith weakly solving the
game. Note that this contrasts the solution in [3], where a
winning move is listed for every winning position of Order,
strongly solving the game.

The proof of Theorem I.4 can be found in Section III,
resting on a SAT formulation of the game. In this section,
we also prove Proposition I.5. For some of the games not
covered by the above theorems, we provide MCTS simulations
in Section V. Finally, we discuss some generalizations of these
results to infinite boards in Section VI.

Throughout, in all strategies discussed, the listed steps are
executed in order. When a move is made, after the other
player’s turn, we start again with the execution of the first
step.

II. MAKER-BREAKER GAMES AND PASSING

A classic maker-breaker game is defined by a set U and a
family of winning sets F ⊆ 2U . Maker and breaker alternate
turns, each turn claiming an unclaimed element from U . Maker
wins by claiming all elements in some F ∈ F , while breaker
wins by claiming at least one element from each F ∈ F .

The Order versus Chaos game ovc(B,m, p) differs from
classic maker-breaker games in that both players do not claim
an element from B as their own on their turn, but instead
assign an as of yet unassigned element to either X = {b ∈
B | f(b) = } or O = {b ∈ B | f(b) = }. The winning sets
are the win lines, and Order (maker) wins if either L∩X = L
or L ∩ O = L for some win line L, while Chaos (breaker)
wins if L ∩X 6= ∅ and L ∩O 6= ∅ for all win lines L.

While it is clear that in a classic maker-breaker game, it is
disadvantageous to pass for either player, this is not always
true in Order versus Chaos.

Example II.1. Consider ovc([2] × [1], 2,Chaos). It is clear
that Order wins this game. However, the variant ovc′([2] ×

[1], 2,Chaos) is won by Chaos by passing on the first turn.
Similarly, the game ovc([2]× [1], 2,Order) is won by Chaos,
while ovc′([2]× [1], 2,Order) is won by Order.

Some relations between the passing variant and the regular
game are summarized in the following lemma.
Lemma I.1. Write X � Y for ‘Order wins X implies Order
wins Y ’. Let A ⊆ B ⊆ C be boards, p a player and m > 0.
Then

ovc′(A,m,Chaos) � ovc′(B,m,Chaos) � ovc(B,m, p)

� ovc′(B,m,Order) � ovc′(C,m,Order).

Proof. To prove the third inequality, if Order wins
ovc(B,m,Order), it is clear that Order also wins
ovc′(B,m,Order). If Order wins ovc(B,m,Chaos), then
Order wins ovc′(B,m,Order) by using the same strategy, but
passing on the first turn.

For the second inequality, we use a similar argument, but by
contrapositive. Hence, suppose that Chaos wins ovc(B,m, p)
for some p. Then Chaos must also win ovc′(B,m,Chaos)
using the same strategy if p = Chaos, and passing on the
first turn if p = Order.

For the first inequality, Order can apply her winning strategy
for A to B by treating every move by Chaos outside of A as
a pass from Chaos on A.

For the last inequality, suppose Order has a winning strategy
for ovc′(B,m,Order). Then she can win ovc′(C,m,Order) by
applying this strategy when Chaos moves in B while passing
when Chaos moves in C \B.

Example II.1 shows that the implications defined by the
second and third inequalities are not equivalences. The next
example shows that holds for both other implications, as well.

Example II.2. Consider ovc′([1]2, 2,Chaos) and
ovc′([2]2, 2,Chaos). It is clear that Order cannot win
ovc′([1]2, 2,Chaos), as there is not enough space for a line of
length 2, while it is straightforward to check that Order wins
ovc′([2]2, 2,Chaos). Similarly, Order wins ovc′([2]2, 2,Order),
but not ovc′([1]2, 2,Order).

Remark II.3. In ovc′, a player never needs to pass on
consecutive turns. Suppose a player p passes at turn n, the
opposing player makes a move s at b, and then passing is a
winning move for p. Instead player p can play s at b turn n,
resulting in the same winning game state. Hence the pass was
unnecessary.

III. WINNING STRATEGIES FOR CHAOS

We prove Theorem I.4 by explicitly constructing a strategy
for Chaos. In the construction, we use a so-called “pairing
strategy”, the likes of which can be used to solve, e.g., variants
of tic-tac-toe, as well as a variant of the original version of
Order versus Chaos [1], [6].

Throughout, B ⊆ Z2 will be a board. For a line L ⊆ Z2 of
length m ≥ 2 there exist two lines L+ of length m+ 1 such



that L ⊆ L+. We choose L+ = L∪{(x, y)} such that 2y− x
is maximal among the two possibilities, or equivalently such
that (x, y) occurs before the points of L in ‘reading order’
(left-to-right, top-to-bottom).

Proposition III.1. There exists a partitioning P of Z2 into
lines of length 2 such that the following holds:

(i) For every line L of length 9 there exists a P ∈ P such
that P ⊆ L.

(ii) For every line L of length 10 there exists a P ∈ P such
that P+ ⊆ L.

We call P a ‘pairing’ and its elements ‘pairs’.

Proof. We give a constructive proof.

Figure 1: Pairing for good parity

Consider Figure 1, where each square in the grid represents
an element of the flat torus (Z/8Z)2, and each thick line
denotes a pair of two adjacent squares. Observe that every
row, column and diagonal of (Z/8Z)2 contains a pair P .

Figure 2: From (Z/8Z)2 to Z2

Equivalently, Figure 1 gives a partitioning P of Z2 into lines
of length 2 by daisy chaining the pattern. For any line L ⊆ Z2

of length at least 8 we consider its image L in (Z/8Z)2 and
note that this image must contain a pair P . If L has length
exactly 8, it is possible that L intersects two pairs with image
P non-trivially without containing any, as in Figure 2 where
L is drawn grey. However, in this case, extending L by one in
either direction solves this problem, which proves (i). Proving
(ii) goes similarly.

The pairing given by Figure 1 is rather irregular and hard
to find. One can easily find pairings for (Z/nZ)2 for n > 8.
The reason for this is straightforward combinatorics: there are
4n lines that have to contain a pair, which requires 8n points,
while we have n2 points available. This also suggests that a
pairing for n = 8 could just be possible.

To find the pairing in Figure 1, we formulated the problem
as an instance of the Satisfiability (SAT) problem. An instance
of SAT consists of a Boolean expression in conjunctive normal
form, and a solution is a true/false assignment of the variables

that makes the expression true, or a proof that such an
assignment does not exist. While the SAT problem has long
been known to be NP-complete, modern-day solvers can still
efficiently solve sizeable instances with ease. To find the
required pairing, we have used the PicoSAT solver [7].

We introduce a variable x{p,q} for each pair of adjacent
points p, q ∈ (Z/8Z)2. Setting x{p,q} to true corresponds to
pairing the squares p and q. For every two intersecting pairs
A 6= B, we add a clause (¬xA) ∨ (¬xB) to guarantee that a
square is paired to at most one other square. Now, any line
L ⊆ (Z/8Z)2 of length 8 contains 8 pairs of adjacent points
A1, . . . , A8, of which at least one pair must be coupled. To
do so, we add a clause xA1 ∨ . . . ∨ xA8 . Any solution to the
conjunction of the aforementioned clauses thus corresponds
to a pairing as desired, and the pairing in Figure 1 is such a
solution.

Using this pairing, we now describe a strategy for Chaos.

Strategy III.2. Let P be a pairing of Z2 given by Proposi-
tion III.1. For b ∈ Z2, write b for the unique element such
that {b, b} ∈ P . Let f be the current state, E = f−1[{ }]
the set of empty squares and U = {b ∈ B | b 6∈ B} the set of
unmatched squares.

(i) If, in the previous turn, Order played s ∈ S at b ∈ B
such that b ∈ E, then play s at b.

(ii) If there exists some b ∈ E ∩ U , then play anything at b.
(iii) Choose any b = (x, y) ∈ E such that 2y − x is maximal

and let c ∈ Z2 be such that {b, b}+ = {b, b, c}. If c ∈ B,
play f(c) at b. Otherwise, play anything at b.

Theorem I.4. Let B be a board and let p be a starting player.
Then

(i) Chaos wins ovc(B,m, p) for all m ≥ 9 when the game
has good parity.

(ii) Chaos wins ovc′(B,m,Order) for all m ≥ 10.

Proof. We show that Strategy III.2 is well-defined and winning
for Chaos. Note that in Strategy III.2, a move at b is only made
when f(b) = , i.e., all moves are legal. In step (iii), note
that f(c) 6= when c ∈ B, otherwise we would have chosen
c instead of b as the square to make our move in. Hence
Strategy III.2 is well-defined.

(i) First, we consider ovc(B, 9, p) with good parity. Note
that in this case Chaos will always be last to play in U : if
Chaos is the starting player, then |U | is odd and he plays in U
his first turn; if Order is the starting player, then |U | is even.
Chaos plays in U when Order did, so the last turn |U ∩ E|
will always be even at the start of Order’s turn. Consequently,
we never enter step (iii) of Strategy III.2 when the game has
good parity. In this case, when the game ends, we have for each
b ∈ B that either b ∈ U or f(b) = f(b) by step (i) and (ii) of
the strategy. Then, by Proposition III.1, every win line contains
a pair {b, b}, which we just noted is not homogeneous. Hence
the board is not in order and Chaos wins, proving (i).

(ii) Now consider the game ovc′(B, 10,Order). For P ∈ P
such that P+ ⊆ B, we consider the first time a player plays
at P . If Order is first to play in P , then Chaos follows in



step (i), after which P and in particular P+ becomes non-
homogeneous. When Chaos is first to play in P , then this
must happen in step (iii), after which P+ becomes non-
homogeneous. Then, at the end of the game, by Proposi-
tion III.1, every win line contains a P+ for some P ∈ P ,
none of which are homogeneous. Hence again Chaos wins.

The rest of the statement now follows from Lemma I.1.

Strategy III.2 shows that the game is winning for Chaos if
Order needs to make a long homogeneous line to win. For
shorter win line length, Proposition I.5, which we prove next,
gives some specific results.

Proposition I.5. Chaos wins ovc′([5+2m]2, 5+m,Order) for
all m ≥ 0.

Proof. We begin by showing that Chaos wins
ovc([5]2, 5,Order) similarly to Theorem I.4.ii, namely
by partitioning the board so that some of the squares are
matched. Consider the (partial) pairing P as displayed in
the center 5 × 5 subboard B of Figure 3, where squares
with the same number are paired and non-numbered squares
remain unpaired. Again, for b ∈ Z2, we write b for the unique
element such that {b, b} ∈ P . Note that every line L ⊆ B of
length 5 contains a pair. We now give a slight modification
of Strategy III.2 for Chaos.

43 46 46 45
33 36 36 35
23 26 26 25

42 32 22 0 7 6 7 3 20 30 40
47 37 27 10 11 11 8 4 24 34 44

9 2 8 9
47 37 27 10 2 5 5 4 24 34 44
45 35 25 3 1 6 1 0 23 33 43

20 21 21 22
30 31 31 32
40 41 41 42

Figure 3: (Partial) pairing for [5]2 and [11]2

(i) If in the previous turn Order played s at b such that
{b, b} ∈ P and b is empty, play s at b.

(ii) If there is an empty b ∈ B such that there is no empty
b ∈ B, play anything at b.

(iii) If there is a pair {b, b} ∈ P with b empty such that the
corresponding win line contains s ∈ { , }, play s at b.

Analogous to the proof of Theorem I.4, this is a winning
strategy for Chaos if step (iii) is well-defined, i.e., if we can
always find such a pair. We enter step (iii) only when the
center is filled, in which case we can play in the pair marked 0,
assuming it is not already filled. Note that every pair numbered
n ≥ 1 has in its associated win line a square of the pair
numbered n − 1. Therefore, inductively, we can always play

in the pair marked n with n minimal among the empty pairs.
Hence Chaos wins ovc′([5]2, 5,Order).

Note that only m = 1, 2, 3, 4, 5 remain, as the rest follows
from Theorem I.4. We give a proof for m = 3 as the rest
goes analogously and is left as an exercise for the reader. For
the board [11]2 we apply the previous strategy to the center
5 × 5 squares. Then note that almost all lines of length 8
have 5 squares in the center subboard and are already taken
care of. The only extra lines are a few off-diagonals, and the
orthogonal lines contained completely in the border, and, if we
label the border as in Figure 3, all of them contain pairs. When
the unmatched squares and the center subboard are completely
filled, each of the remaining pairs on the border has a filled
square in between them, so we may block the corresponding
lines as in step (iii) of the strategy for [5]2. Hence Chaos wins
ovc′([11]2, 6,Order).

To generalize this to other m one needs to extend or restrict
the given border for the 11×11 board in the obvious way.

A different approach to designing strategies for maker-
breaker games is using a potential function, which assigns
a value in [0, 1] to every win line [8]. A line containing both
symbols is assigned the value 0, a homogeneous line is mapped
to 1 and any other win line is assigned a value non-decreasing
in the amount of empty squares. If the total potential of all win
lines is strictly less than 1 at the start of the game, to show
that Chaos wins playing first, it suffices to show that after
every pair of moves of Chaos and Order, the total potential
has not increased. While this is a straightforward argument for
true maker-breaker games, it is hard for Order versus Chaos,
as a move by Chaos can increase the potential gained by a
subsequent move of Order.

IV. WINNING STRATEGIES FOR ORDER

We continue by proving Theorem I.2, first taking care of
the small cases.

Lemma IV.1. Order wins ovc′([n]2, n,Chaos) for n = 1, 2, 3.

Proof. For n = 1, 2 this is trivial, so consider n = 3. If Chaos
chooses to move we may assume by rotating the board that he
moves anywhere in the lower triangular subboard B colored
white in Figure 4. If Chaos passes we may move at the square
marked with a dot. Then, regardless of whether Chaos passes
the next turn we may apply rotations to the board such that
precisely one square of B is filled and it is Order’s turn.

Figure 4: 3× 3 board

Now Order can force Chaos to keep playing in B by
repeatedly forming a line of length 2. It can easily be verified
that this always results in a win for Order.



We continue by assessing ovc′([4]2, 4,Chaos). For this
game, we constructed a player for both Order and Chaos using
Monte-Carlo Tree Search (MCTS) with Upper Confidence
Bounds applied to Trees (UCT) as selection method [9], [10],
further explained in Section V. Pitting these MCTS players
against each other, we analyzed the strategy employed by
Order in a myriad of games. From this analysis, an explicit
rule-based strategy for Order was distilled [11].

∗

Play at ∗

∗

Play at ∗

∗

Play at ∗

∗

Play at ∗

∗

Play at ∗

∗

Play at ∗

Figure 5: Exceptions

Strategy IV.2. Let B = [4]2, f the current state and E =
f−1[{ }] the set of empty squares. Let L be the set of win
lines, and for b ∈ B, let Lb = {L | b ∈ L ∈ L}. We call
L ∈ L broken when { , } ⊆ f [L] and unbroken otherwise.
For an unbroken line L we define its weight w(L) = |{b ∈
L | f(b) 6= }|.

Whenever there is a choice between playing in different
b ∈ B, we pick the lexicographically minimal, where the
northwest square is numbered (1, 1). In addition to this, there
are six exceptional boards. These boards and the corresponding
winning moves for Order are in Figure 5.

(i) If the board is in Figure 5, play the defined move.
(ii) If f [B] = { }, play at (2, 2).

(iii) If there exists an unbroken L ∈ L with w(L) = 3, we
win by playing in L.

(iv) If there exist a b ∈ E and distinct unbroken L1, L2 ∈ Lb

of weight 2 such that f [L1] = f [L2] = { , s} for some
s ∈ { , }, play s at b.

(v) Let Es = {b ∈ E | (∀L ∈ Lb) s ∈ f [L] ⇒ s ∈ f [L]}
be the set of squares in which playing s does not break
a line. If E = E ∪ E is non-empty, let L be a win line
intersecting E of maximal weight. For any b ∈ L∩Es for
some s ∈ { , }, play s at b.

(vi) Let Ls be the set of win lines containing s ∈ { , } and
let L∗s be the set of lines in Ls of maximal weight w∗

among all unbroken lines. For any square b, let ws(b) =
max{w(L) | b ∈ L ∈ Ls} be the weight of the longest

unbroken line through b. We play s in b as to maximize
ws(b) under the constraint that there is no L ∈ L∗s for
which b ∈ L, so that we do not break any line of weight
w∗.

For illustration, we draw what will happen when we en-
counter exception 4. The number above the symbol is the
turn in which the symbol was played, and the letter below
identifies the player that makes this move. Note that, to verify
that the strategy is winning for Order, we need to check all
possible moves of Chaos. Here, we show only two, as means
of example.

4

C

10

C

9

O

8

C

3

O

11

O

7

O

5

O

6

C

2

C

1

O

7

O

3

O

4

C

6

C

5

O

2

C

1

O

Figure 6: Working out two possible outcomes of Exception 4

Lemma IV.3. Order wins ovc′([4]2, 4,Chaos).

Proof. We verify that Strategy IV.2 is winning for Order by
straightforward computer proof: we check that the strategy is
weakly winning against a brute-force player for Chaos. See
the Appendix for a reference to the source code.

To complete the proof of Theorem I.2, we provide the
following lemma, based on the result in [3], solving the final
case ovc′([6]2, 5,Chaos).

Lemma IV.4. Let n ≥ 1. If Order wins ovc′([n]2, n,Chaos),
then Order also wins ovc′([n+ 2]2, n+ 1,Chaos).

B1

0 1 2
6
7

3 4 5
6
7

215
9
8

3 4 0
9
8

Figure 7: Mirroring strategy on B

Proof. We partition B = [n + 2]2 into its n × n center B1

and its border B2 = B \ B1. As in Figure 7 we consider the
pairing P of B2 that pairs opposing squares, i.e., {u, v} ∈ P
if and only if u, v ∈ B2 are distinct and {u, v} ⊆ L for some
line L ⊆ B of length n+ 2 intersecting B1. We consider the
following strategy for Order:

(i) If we can win by completing a win line, do so.
(ii) If Chaos plays in B2, play the opposing symbol in the

paired square.



(iii) Apply the winning strategy for ovc′(B1, n,Chaos) to B1.
We show that the strategy is well-defined and winning. Note

that we only play in B2 in response to Chaos in step (ii)
or when we win in step (i). Hence if Chaos plays in B2,
then B2 will always contain an odd number of filled squares
and since |B2| = 4(n + 1) is even there must be an empty
square left. Thus step (ii) is well-defined. If B1 is filled at the
start of our turn, then due to the strategy applied it contains
a homogeneous line L of length n. Then there exists a pair
P ∈ P such that L ∪ P is a line of length n + 2. We either
have that P is empty, in which case we can in fact win in step
(i), or both squares are filled with opposing symbols due to
step (ii), in which case a homogeneous line of length n + 1
already exists. Hence step (iii) is well-defined, and since B1

will be filled at some point in the game, the strategy is also
winning.

Theorem I.2. Let B be a board containing [n]2 for
some n. Then Order wins ovc′(B,m,Chaos) for (m,n) ∈
{(1, 1), (2, 2), (3, 3), (4, 4), (5, 6)}.

Proof. Combine Lemma IV.1, Lemma IV.4 applied to
Lemma IV.3, and Lemma I.1.

V. MONTE CARLO RESULTS

Monte-Carlo Tree Search (MCTS) is an algorithm that, for
every move, iteratively builds a game tree in search of good
states, starting with the current state as root [10]. The search
is done in four steps per iteration.

(i) Selection. In the current state s, we select a state t
reachable by one move which has not been visited yet.
If such a state does not exist, we pick a reachable state
t for which

vt + C

√
lnns

nt

is maximized, where ns is the amount of times state s has
been visited (analogous for nt), vt is the percentage of
visits that eventually led to a win for the current player,
and C is a chosen constant. We continue selecting until
we reach an as-of-yet unvisited state or a terminal state
in which either player has won.

(ii) Play-out. The game is finished by making random moves
until a player has won.

(iii) Expansion. The new state which was encountered for the
first time is added to the tree.

(iv) Backpropagation. All the states that have been visited in
the current iteration are updated to incorporate the results
of the played-out game.

After a set amount of iterations, cq. play-outs, the current
player performs the move leading to the state t with the highest
vt, and the search is continued.

To find Strategy IV.2, the algorithm was run with C =
√
2

and 5,000 play-outs per move. After running the algorithm
numerous times, we discovered a pattern in Order’s moves,
which was used to synthesize the steps of the strategy. While
the first two rules of Strategy IV.2 are straightforward, the

# itr. 100,000 60,000
m n 3 4 5 6 7 8 9 10 11 12 13

3 100 100 100 - - - - - - - -
4 - 100 100 100 - - - - - - -
5 - - 0 91 99 100 100 - - - -
6 - - - 0 0 22 50 91 99 100 -
7 - - - - 0 0 0 0 1 23 64
8 - - - - - - - - 0 0 1

Table I: Win percentage of Order in MCTS simulation of one
hundred ovc([n]2,m,Order) games.

# itr. 100,000 60,000
m n 3 4 5 6 7 8 9 10 11 12 13

3 100 100 100 - - - - - - - -
4 - 100 100 100 - - - - - - -
5 - - 0 95 100 100 100 - - - -
6 - - - 0 0 18 55 90 100 100 -
7 - - - - 0 0 0 0 2 27 61
8 - - - - - - - - 0 0 0

Table II: Win percentage of Order in MCTS simulation of one
hundred ovc([n]2,m,Chaos) games.

# itr. 100,000 60,000
m n 3 4 5 6 7 8 9 10 11 12 13

3 100 100 100 - - - - - - - -
4 - 100 100 100 - - - - - - -
5 - - 0 86 100 100 100 - - - -
6 - - - 0 0 15 61 92 99 100 -
7 - - - - 0 0 0 0 1 14 50
8 - - - - - - - - 0 0 7

Table III: Win percentage of Order in MCTS simulation of
one hundred ovc′([n]2,m,Order) games.

# itr. 100,000 60,000
m n 3 4 5 6 7 8 9 10 11 12 13

3 100 100 100 - - - - - - - -
4 - 100 100 100 - - - - - - -
5 - - 0 95 100 100 100 - - - -
6 - - - 0 0 22 52 92 98 100 -
7 - - - - 0 0 0 0 1 33 67
8 - - - - - - - - 0 0 0

Table IV: Win percentage of Order in MCTS simulation of
one hundred ovc′([n]2,m,Chaos) games.

latter ones are more involved. By testing the algorithm without
the exceptional step (i), the game was weakly solved except
for in the six cases shown in Figure 5. Adding these boards
as exceptions, the strategy weakly wins the game for Order.

For the game of ovc([n]2,m, p), we have exhaustive theo-
retical results for m ≤ 5 in Theorem I.2 and for m ≥ 10 in
Theorem I.4. However, for m ∈ {6, 7, 8, 9}, our only provable
result is for small boards in Proposition I.5, and for boards
of good parity in Theorem I.4. For these values of m, we
conducted additional MCTS experiments.

The results of the experiments can be found in Table I and
Table II. The algorithm was run with C =

√
2 for all values

of m and n. The amount of play-outs allowed per move is
dependent on n and shown in the first row of the tables. Each
game was simulated 100 times; the tables show the amount of
games won by Order.

Although we must note that it is unknown whether MCTS



inherently favors one of the asymmetric players, we formulate
some conjectures looking at the results. For m = 6, we know
that the game on the board [n]2 is winning for Chaos for
n ≤ 7, which is also the result found by MCTS. For n = 8,
the game also seems to be winning for Chaos. For n = 9, the
simulation results are unclear. For n ≥ 10, the game appears
to be winning for Order.

For m = 7, 8, MCTS again shows an increase in win rate for
Order when the board becomes larger, leading to the conjecture
that ovc([n]2,m, p) is winning for Order if and only if n ≥
Nm for some fixed Nm. However, the results do not show a
sharp threshold with the current amount of iterations, and thus
do not give an indication for the values of Nm.

In Section II, we remarked that, theoretically, passing may
be a beneficial move for either player. To investigate the impact
of allowing a player to pass, we ran MCTS simulations for the
game ovc′, the results of which can be found in Table III and
Table IV.

Note that the results are very similar to those in Table I.
Hence, it appears that allowing the starting player to pass
does not have a large impact; investigating the moves made
by the MCTS players, we find that passing is rarely done.
It thus seems that, in the games we consider here, passing
is not advantageous to either player. Finally, note that for
these games, also the starting player does not seem to have a
noticeable effect.

VI. INFINITE BOARDS

We can generalize ovc(B,m, p) and ovc′(B,m, p) to non-
finite boards B. Here, Order wins as usual when there is a
homogeneous line of length m. As there is no way to fill the
board, Chaos cannot win in the traditional sense. Hence, we
define ovc(B,m, p) for infinite B to be won by Chaos if no
winning strategy for Order exists.

First note that Lemma I.1 generalizes to infinite boards
almost perfectly. The only exception is ovc′(B,m,Order) �
ovc′(C,m,Order), which only holds when C \B is finite, as
Order wants to ensure they do not keep playing in C \ B
forever when Order plans to win on B. Now Theorem I.2
is applicable and Order wins ovc′(B,m,Chaos) for small m
when B contains a sufficiently large square subboard. For
m = 2 we can do slightly better.

We say a, b ∈ B are neighbours if {a, b} is a line of length
2. The connected relation is then the transitive closure of the
neighbour relation.

Lemma VI.1. Let B be a possibly infinite board. Then Order
wins ovc′(B, 2,Chaos) if and only if B contains a connected
component of size at least 3.

Proof. Note that a connected component of size at least 3
contains a pair of distinct intersecting win lines L1 and L2.
Since Chaos can never play in an empty win line, Order can
play in L1 \ L2 and win in her next turn. If all connected
components of B are of size at most 2, then all win lines are
disjoint. Chaos can simply pass until Order moves in a win
line and counter.

For Chaos, we extend Theorem I.4.

Definition VI.2. We say ovc(B,m, p) has good parity
(i) in case B is finite, when p = Chaos if and only if |B| is

odd.
(ii) in case B is co-finite, i.e., Z2 \ B is finite, when p =

Chaos if and only if |Z2 \B| is odd.
(iii) in case B and Z2 \B are infinite, always.

Lemma VI.3. If B ⊆ Z2 is neither finite nor co-finite, then
there are infinitely many lines L ⊆ Z2 of length 2 for which
|L ∩B| = 1.

Proof. Suppose there are only finitely many lines L ⊆ Z2 of
length 2 for which |L ∩ B| = 1 and let E be their union.
Then, up to a translation of B, there exists some n ≥ 0 such
that E ⊆ [n]2. Since B is not finite, B \ [n]2 is non-empty.
For each b ∈ B \ [n]2 all its neighbours a are in B \ [n]2,
otherwise {a, b} ∈ E. Since Z2 \ [n]2 is connected we have
Z2 \ [n]2 ⊆ B, so B is co-finite. The lemma follows from
contradiction.

Theorem VI.4. Let B be a possibly infinite board and let p
be a starting player. Then

(i) Chaos wins ovc(B,m, p) for all m ≥ 9 when the game
has good parity.

(ii) Chaos wins ovc′(B,m,Order) for all m ≥ 10.

Proof. (i) When B is finite this is Theorem I.4.i. When B is
co-finite, Strategy III.2 is still applicable: there are only finitely
many unmatched squares, and because of the parity, Chaos is
never first to play in a pair. We never enter step (iii), so as
in the proof of Theorem I.4, no homogeneous line of line of
length 9 can ever exist.

Now consider the case where B is neither finite nor co-
finite. Partition the lines of length 2 in Z2 by their image
in (Z/8Z)2. At least one of these partitions L must contain
infinitely many L ∈ L such that |L∩B| = 1 by Lemma VI.3.
After translating B we may assume L is contained in the pair-
ing P given by Proposition III.1. Then, applying Strategy III.2
we have infinitely many unmatched squares, so we never enter
step (iii) of the strategy, and again no homogeneous line of
length 9 can occur. Thus Chaos wins ovc(B,m, p).

(ii) Again, the finite case was already shown. The non-finite,
non-co-finite case, proceeds the same as the proof of (i), since
there is an infinite number of unmatched squares. For the co-
finite case, we can find a pairing of (Z/9Z)2 as in Proposi-
tion III.1 with ample unmatched squares to show that Chaos
wins ovc′(Z2, 10,Order) and thus ovc′(B, 10,Order).

VII. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we proved that the game of Order versus
Chaos is winning for Order if her objective is to make a line
of length at most 5, and the board is suitably large. For the
proof, we constructed explicit strategies, fuelled by MCTS
simulations. For Chaos, we proved that he wins the game if
Order needs to make a line of length at least 10, using a SAT
solver to find a winning strategy. For winning lines of length



between 6 and 9, we showed that Chaos wins if the board is
of suitable size or parity. Furthermore, we generalized some
of the theoretical results to infinite boards.

For boards which do not meet these requirements, we
ran MCTS simulations to develop conjectures. The results
of these simulations suggest that Order wins the game
ovc([n]2,m,Order) if and only if n is sufficiently larger than
m. Note that for general boards B and C with B ⊆ C, it is
not necessarily the case that ovc(B,m, p) being won by Order
implies that ovc(C,m, p) is won by Order. However, from the
MCTS simulations, one might conjecture that this statement
does hold for the games ovc([n]2,m,Order) with m = 6, 7, 8.
It would be interesting to see whether this could be proven.

Besides drawing conclusions from the generated MCTS
results, it might be fruitful to explore other AI techniques,
such as deep learning, in order to derive more information.
For the games ovc([n]2,m,Order) with m = 7 or m = 8, for
example, based on the current results, nothing can be said on
the threshold for n (if this exists) at which the game becomes
winning for Order. Moreover, different techniques may show
different strategic behaviour, of which the analysis may lead
to new theoretical insights.

Finally, the question of whether passing is advantageous
for either player is an interesting one to further investigate,
it being a crucial difference between Order versus Chaos and
classic maker-breaker games. In Section II, we discussed that
passing once can theoretically be an advantage for both players
to solve parity problems, while passing twice in a row is never
necessary to win. It is unknown whether passing more often
offers an advantage to either player. However, the simulations
in Section V, showing that Tables I through IV are roughly
the same, strongly suggest that passing is not beneficial except
for in edge cases like Example II.1.
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APPENDIX

Some of our proofs rely on intensive computation.
We made our source code available through GitHub at
www.github.com/MadPidgeon/Order-versus-Chaos. We briefly
describe the files:
dump.cc generates files order.txt and chaos.txt

consisting of zeros and ones indicating for each of the 316

game states of ovc′([4]2, 4,Chaos) whether it is winning for
the respective player. Both of these files are of size 43 MB and
can be used as input for programs to quickly verify whether
a strategy is winning for a player.
verify.py implements an Order player using Strat-

egy IV.2, which is verified against all possible moves of Chaos
to prove Lemma IV.3.
sat/ contains the code generating the pairing for Proposi-

tion III.1, written by Ludo Pulles and Pim Spelier.

table/ contains the code generating the computational
MCTS results for Section V.
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