
Reinforcement Learning with Action-Specific
Focuses in Video Games

Wang Meng
Fuxi AI Lab in Netease

Hangzhou, China
wangmeng02@corp.netease.com

Chen Yingfeng∗
Fuxi AI Lab in Netease

Hangzhou, China
chenyingfeng1@corp.netease.com

Lv Tangjie
Fuxi AI Lab in Netease

Hangzhou, China
hzlvtangjie@corp.netease.com

Song Yan
Fuxi AI Lab in Netease

Hangzhou, China
songyan@corp.netease.com

Guan Kai
Fuxi AI Lab in Netease

Hangzhou, China
guankai@corp.netease.com

Fan Changjie
Fuxi AI Lab in Netease

Hangzhou, China
fanchangjie@corp.netease.com

Yu Yang
Nanjing University

Nanjing, China
yuy@nju.edu.cn

Abstract—It is intuitive that different actions prefer different
information in human decisions. However, classical reinforcement
learning models use the same information process procedure
for all actions. In order to imitate human decision-making
process closer, in this paper we investigate a new policy model,
i.e., Action-Specific Focuses (ASF) framework, which enables
different focuses when learning different actions. In the ASF
framework, the whole action set is taken as part of the queries
for the attention module, in which state-dependent action-specific
features can be generated. Through extracting different action-
specific features, our approach enables the agent to learn the
action–focus map for each action separately. The ASF framework
is also different from the previous usages of attention mechanisms
in reinforcement learning that are mostly based on the state.
Experiments on the Atari benchmark show that ASF is able to
improve the performance in various types of games. Moreover,
the visualizations of the attention weights suggest that ASF can
learn meaningful focuses when taking different actions.

Index Terms—artificial intelligence, deep reinforcement learn-
ing, attention

I. INTRODUCTION

In recent years, deep reinforcement learning (RL) has
achieved incredible performance in learning various tasks such
as Go [1] and Atrai games [2]. More and more algorithms
[3], [4] have been proposed and they can generate an agent
that far exceeds average human-level in many Atari games.
However, classical RL algorithms use the same information
process procedure for all actions, whereas the human brain
prefers to generate a specific focus for each action under the
same state.

We provide a life-common example in Figure 1. Before
taking a turn in driving, one usually glances at the rearview
mirror to ensure that the left or right rear is safe for the “turn”
action. Similarly, in order to keep a safe distance from the
front and rear vehicles, one will focus on the areas outside the
front window and in the interior mirror for “accelerate” and
“brake” actions respectively. In these cases, the focus depends

∗Corresponding author.

Fig. 1: Relationship between the human focuses and the
actions when driving a car. The red rectangles in the right
column represent the focuses for the corresponding actions in
the middle column.

on the planned actions (“turn”, “accelerate” or “brake”). And
this action-specific attention mechanism enables the human
brain to make accurate decisions with its limited capacity. In
cognitive science, this intention-guided attention mechanism
is called the top-down attention [5]. Correspondingly, the
bottom-up attention is purely driven by the external factors,
which is similar to the classical state-determined attention
mechanisms used in RL.

In this paper, we propose the Action-Specific Focuses (ASF)
framework to imitate the top-down decision-making process of
the human. In the ASF framework, actions play the roles of
the intentions in human’s top-down attention, and in order
to learn the action–focus map for each action separately,
we leverage the attention mechanism to select the important
features specific to different actions. Note that current attention
functions [6], [7] used in RL only input the states as the
queries. Our approach is different from them in that we believe

978-1-7281-4533-4/20/$31.00 ©2020 IEEE

the intended action is also a cause of the attention. As a result,
our method enables the agent to focus on different parts of the
features for different actions.

We experimentally analyze the attention weights for differ-
ent actions in ASF, checking whether the focuses generated by
ASF are consistent with the human intuition. And the results
show that ASF successfully produces meaningful attention for
each action. We also evaluate our approach on the entire Atari
benchmark, and the results demonstrate that ASF can improve
the performance both in convergence speeds and best results
compared to the state-of-the-art algorithms.

II. RELATED WORK

A. Biological Motivation

There is evidence that the human brains naturally reduce the
dimensions of the real-world problems with attention mech-
anisms to solve the “curse of dimensionality” problem [8].
Furthermore, the attention mechanism in the human cognitive
system can be classified into two categories. One is generated
volitionally by top-down signals determined by a specific goal,
and the other is driven automatically by bottom-up signals
associated with unexpected, novel or salient stimuli [5], [9].
Based on these studies, our work focuses on improving the RL
algorithm by introducing a more explicit and effective way to
imitate this top-down decision-making process of the human.

B. Attention in RL

Attention models are widely used in domains such as image
captioning [10] and machine translation [11], [12]. Recently
more and more researchers introduce the attention mechanism
into RL, and these studies can be divided into three categories:
temporal attention, spatial attention and the combination of
them. Similar to the attention methods used in machine trans-
lation, [6] models the RL as a multiple-step decision-making
problem and then uses an attention function to compute the
priorities of the information belonging to different former
steps in memory. The differential neural computer (DNC)
[13] involves a neural network controller that reads/writes
from an external memory matrix through attention mechanism,
which outperforms the long short-term memory (LSTM) in a
variant of the Tower of Hanoi task. In contrast, some other
researchers leverage the spatial attention mechanism used in
image captioning to help the agent to concentrate on crucial
regions [7] or important entities [14] in the input image.
Reference [15] uses a spatial attention mechanism to determine
whether each region in the input image is controllable by
the agent for tackling exploration problems in Atari games.
Furthermore, [16] and [17] combine the temporal attention
and the spatial attention in the framework of deep recurrent
Q-network (DRQN) and deep recurrent deterministic policy
gradient (DRDPG) respectively, which use the hidden state
of the LSTM as the attention query. From the perspective of
attention mechanism, the biggest difference between our work
and the previous work is that: for a given state, we generate
different attentions for different actions, whereas the traditional
methods use the same attention for all actions.

C. Top-Down Attention

In practice, different approaches model the top-down at-
tention in different ways. In the human visual system, [18]
uses the top-down attention to locate a given target object
in an image, and the ”given target object” is involved for
the attention computation. In the autonomous driving systems,
[19] and [20] introduce the high-level navigation commands
(generated by an external navigation module or human) as the
conditions and the supervised learning losses are computed
based on them. In this paper, we construct the top-down
attention by imitating the human decision-making process, i.e.,
generating different attentions for different actions under the
same state. To the best of our knowledge, the most similar
work to our method in this regard is [21], which reconstructs
different images according to different prior biases when
classifying noisy handwriting digits, and these prior biases
indicate the probabilities that the input image belongs to each
class. The method in [21] needs a pre-train step and is used in
the supervised learning setting with the direct and undelayed
error signals, whereas our method is end-to-end differentiable
and able to adapt to the RL process with delayed reward
signals.

III. METHOD

As shown in Figure 2, we introduce an additional Action-
Specific Focuses (ASF) module into the pipeline of the actor
network. The ASF module processes the state and outputs
multiple ASF feature vectors, and each vector corresponds
to a specific action. An attended feature vector is computed
based on each of these ASF feature vectors, and then is sent
to the policy network. The multiple attended feature vectors
lead to multi-dimensional policy network output. After the
output reduction module and a softmax function, we will get
the final action distribution. Note that the attention function is
differentiable, so we can train the whole neural network end-
to-end with the policy gradient algorithm. We present details
of the approach in the following subsections.

A. Notations

We use the tuple (S,A, T, r, γ) to define a discounted
Markov decision process (MDP), where S represents the state
space, A represents the action space, T s,a

s′ = P (s′|s, a) is a
function denoting the probability of the environment transition
from the state s to the next state s′ if the action a is selected,
r : S×A → R is a reward function mapping a state-action pair
to a reward that is provided by the environment, and γ ∈ [0, 1]
is a discount factor. A policy in MDP is denoted as π and
π(a|s) is the probability of taking action a under the state s
with π. Similarly, π(·|s) is the probability distribution of the
actions given state s. Furthermore, let |S| denote the size of
the state space. Let |A| denote the size of the action space
in the discrete action environments and the dimension of the
action vector in the continuous action environments.

Fig. 2: Framework of our method, where × denotes the matrix multiplication, ⊗ denotes the element-wise multiplication,
IA ∈ R|A|×|A| is an identity matrix and EA ∈ R|A| is a vector with all elements equaling to one.

B. Action-specific Focuses

In the ASF module, we aims to find the important dimen-
sions of the input if we plan to execute a specific action at the
current step. According to [12], an attention function can be
described as mapping a query and a set of key-value pairs to
an output. Thus, in the view of attention mechanism, our goal
can be achieved through regarding the action as the query and
each dimension of the feature vector as the key/value. Given
an input vector v, we will compute a normalized attention
weight vector gai for each of the |A| actions as follows:

gai
= softmax([v, ai]W + b) (1)

where ai ∈ R|A| is the one-hot representation of an action,
W ∈ R(|A|+|v|)×|v| and b ∈ R|v| are the parameters to be
learned, and [v, ai] means the concatenation of v and ai.
Our attention function is a variant of the perceptron attention
function. We follow the understanding that attention is a kind
of mapping and leverage a small neural network to approach
this mapping. Then we can obtain the new attended feature
vai

for action ai through multiplying gai
with v element-wise,

which is formulated as follows:

vai
= gai

⊗ v (2)

where ⊗ denotes the element-wise multiplication. Since there
are totally |A| actions available, we can repeat Eq.(1) and
Eq.(2) for each of the |A| actions. In order to accelerate the
computation, we apply the attention function on all candidate
actions simultaneously. In practice, all actions are packed
together as a one-hot identity matrix IA ∈ R|A|×|A|. The input
vector v is also expanded to a matrix V by repeating v for |A|
times and stacking them together. The attention weight matrix
G and the attended feature matrix VA are computed as:

G = softmax([V, IA]W + b) (3)

VA = G⊗ V (4)

Previously, it is an intuitive idea to use the attended feature
matrix VA as the only input to the subsequent networks,
but recent study [22] has shown that it is helpful to take
the original features into consideration. Therefore, we add a

highway connection from the original feature matrix V and
input the the concatenation of VA and V to the policy network.
Since we have transformed a single state vector to a two-
dimensional matrix in ASF module, we introduce the output
reduction module to obtain the one-dimensional π(·|s) as the
vanilla policy network generates. The output reduction module
will select the ith element from the ith output of the policy
network. After the softmax layer, we can get π(·|s) as follows:

π(·|s) = softmax((FCn([V, VA])⊗ IA)× EA) (5)

where × denotes the matrix multiplication, FCn is a fully
connected neural network with n hidden layers, and EA ∈
R|A| is a vector with all elements equaling to one.

C. Training

We use the actor-critic architecture to train the overall RL
model. The output of the actor network is given in Eq.(5), and
the meaning of it is an action probability distribution, which
is the same as the output of the vanilla actor network without
our method. We do not introduce the attention mechanism
in the critic so its architecture is not changed. Given the
above similarities, we can train our model through the policy
gradient algorithm as the vanilla actor-critic model does. The
loss functions of the actor and the critic are shown in Eq.(6)
and Eq.(7) respectively, where A(s, a) is an estimator of the
advantage function, s′ is the next state, H(π) is the entropy of
policy π, β is a hyperparameter and π(a|s) is given by Eq.(5).

Lactor = −E(log(π(a|s)))A(s, a))− βH(π) (6)

Lcritic =
1

2
E(r + γV (s′)− V (s))

2 (7)

We train the attention network and the policy network simulta-
neously acorrding to the loss computed with Eq.(6) and Eq.(7).
Note that the forms of them are the same as the loss functions
of the vanilla actor-critic model, and thus all algorithms based
on actor-critic architecture can use our method by generating
π(a|s) following Eq.(5).

The last problem of the training is the additional computa-
tion cost for each action. In the common environments with

Fig. 3: Game screens (left) and corresponding visualizations
of attentions (right) in LunarLander, in which the state is an
eight-dimensional vector and there are four discrete actions. In
the attention matrices (right), the abscissa indicates the state
and the ordinate indicates the action.

moderate action space size, we can accelerate the training
process through introducing the vectorization operation to
compute all actions’ focuses simultaneously, and the training
speed of ASF on GPU is acceptable in practice. For the envi-
ronments with extremely large action space size, we can use
the action embedding techniques proposed by [23] and sample
some representative action vectors from the action embedding
space, and then calculate the focuses based on them. Note that
even for the RL algorithms without ASF, the additional action
embedding process is needed for solving the problems with
extremely large action space [23]. Furthermore, our method
is also suitable for the environments with continuous action
space, in which the policy network will output the means and
the standard deviations of the actions. The one-hot identity
matrix IA used in Eq.(3) and Eq.(5) will not change, but
each row of it represents a dimension of the continuous action
vector instead of a candidate action. We leave the application

of ASF in the environments with extremely large action space
or continuous action space to future work.

IV. EXPERIMENT AND ANALYSIS

A. Visualization of Attention

First, in order to verify whether the attentions generated
by the ASF is consistent with the human prior knowledge, we
test our method on a tiny game named LunarLander in OpenAI
Gym [24], and record the attention matrices during training.
Examples of the game screens and corresponding attention
matrices are shown in Figure 3. At the beginning of one
episode (the first row in Figure 3), the lander is high and we
can see that different actions focus on different dimensions of
the state according to their effects: the “left-engine” action and
the “right-engine” action focus on the velocity in horizontal
direction because their major task is to produce horizontal
forces, whereas the “main-engine” action focuses on the
velocity in both vertical and horizontal direction. As the lander
gets closer to the ground, if it has a large bias in the horizontal
direction (the second row in Figure 3), all actions related to
the engine will focus on the horizontal velocity to control the
lander more precisely in that direction, which is important for
getting back to the right track. When the lander gets close
enough to the ground (the third row in Figure 3), the “main-
engine” will change its focus to the angle and the legs of the
lander, because these dimensions are important for adjusting
the attitude of the lander so as to make it ready for the final
contact. At the end of the landing (the last row in Figure
3), the “do-nothing” action and the “main-engine” action will
attach great importance to the status of the legs to confirm that
the landing is completed. From this process, we can clearly
observe that different actions will focus on different dimen-
sions in the state, and our approach successfully produces a
proper attention weight for each action as well as captures the
changes in attention during the whole episode. We provide a
video example at https://youtu.be/CWyJSA vp4.

B. Results in Atari Games

Next, we test our method on the Atari benchmark and record
the scores to quantitatively evaluate the performance of ASF.
We use Proximal Policy Optimization (PPO) [4] as the baseline
and implement ASF based on it. Furthermore, in order to figure
out the effects of the slight differences between the vanilla
PPO and the ASF in the network architecture (shown in Figure
4(a) and Figure 4(c) respectively), we add another baseline
called State Attention and its network architecture is shown in
Figure 4(b). State Attention uses the same attention mechanism
as ASF except that it only uses the states as the queries. All
three methods take the raw images as inputs and leverage a
three-layer CNN network to extract the vision features, and we
use the sigmoid activation function after ASF module becase
it performs better for images than the softmax activation
function. Each method is trained for 20 million timesteps per
game with 8 actors. We tested the three methods on the whole
Atari suite, which contains 58 games as the time of writing.
And in the beginning of every episode, the agent will execute

https://youtu.be/CWyJSA__vp4

Fig. 4: Network architectures used in the Atari experiments: (a) network architecture of the vanilla PPO, (b) network architecture
of PPO with State Attention, (c) network architecture of PPO with ASF.

random numbers of no-ops to introduce the stochasticity. To
evaluate the overall performance, we introduce two metrics
used in [4]:

1) The average reward per episode over the last 100
episodes of training.

2) The average reward per episode over the entire training
period.

The first metric (denoted as Final Score) favors final perfor-
mance and the second one (denoted as Learning Speed) favors
fast learning. All metrics are computed across three trials with
different seeds and Table I shows the number of games “won”
by each method, and we judge a method to win a game if this
method gets the highest score in this game.

The results show that ASF outperforms the others in most
of the games both in Final Score and Learning Speed. In
the total 58 games, our method won 32 (55.17%) games
in Final Score and 28 (48.28%) games in Learning Speed.
We summarize the Final Score results and the corresponding
improvement ratios for all 58 games in Table III (in appendix).
The average improvement ratios of ASF compared to PPO
and State Attention are 12.57% and 27.63% respectively.
The improvements of the ASF are more than 20% in 1/5
games and more than 10% in 1/3 games compared to the
vanilla PPO. Through more detailed analysis, we can find
that the improvement ratios of the ASF differs from game
to game. In the games that the differences among the action–
focus maps are small, e.g., Boxing, Breakout and Pong, the
performance of our method is similar to the vanilla PPO. In
contrast, in the more complex games with diverse objects such
as MontezumaRevenge, Tutankham, and ElevatorAction, our
method has more obvious improvements. This is consistent

TABLE I: Number of games “won” by each method.

PPO State Attention ASF

(1) Final Score 15 11 32
(2) Learning Speed 18 12 28

with human intuition because the attention mechanism is
usually more important for the complex problems in human
decision-making process. Furthermore, although the State At-
tention achieves the highest scores in some games, the vanilla
PPO “won” more games than the State Attention both in Final
Score and Learning Speed, which indicates that an improper
attention mechanism may bring negative effects for RL, and
the improvements of ASF is because of the action-specific
focuses rather than including the state into the attention. We
implement our algorithm based on OpenAI Baselines [25] and
the code is available online1. We also provide the values of
the hyperparameters used in our experiments in Table II (in
appendix) and the learning curves in Figure 5 (in appendix).

V. CONCLUSION AND FUTURE WORK

We propose a novel top-down attention framework for RL,
which can generate multiple action-specific features for each
state and thus is able to focus on different sub-parts of the
feature for different actions. With a more accurate feature, our
method shows better performance and faster learning speed
compared to the state-of-the-art algorithms. More importantly,
we provide a new way to introduce attention mechanisms into
RL. The key insight that the execution of each action relies on

1https://github.com/NeteaseFuxiRL/asf.git.

https://github.com/NeteaseFuxiRL/asf.git

different information could inspire future research dealing with
even more complex actions. In addition, our approach is also
adapt to supervised learning in which the labels play a similar
role as the actions in RL. In future work, firstly we intend
to explore the performance of our method in the supervised
learning problems. Secondly, we are interested in using ASF in
off-poilcy RL algorithms [26] or imitation learning algorithms
[27]. Lastly, the combination of hierarchical RL and ASF is
also worth research. In theory, the goals generated by the
high-level module in hierarchical RL can also guide the lower
level module to adjust its focuses. On the other hands, we
are also very interested in applying ASF in more complex
environments such as autonomous driving [28] or multiplayer
online games [29], in which humans will naturally use top-
down attention to sovle these challenging problems.

REFERENCES

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[3] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel,
H. Van Hasselt, and D. Silver, “Distributed prioritized experience
replay,” arXiv:1803.00933, 2018.

[4] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv:1707.06347, 2017.

[5] F. Katsuki and C. Constantinidis, “Bottom-up and top-down attention:
different processes and overlapping neural systems,” The Neuroscientist,
vol. 20, no. 5, pp. 509–521, 2014.

[6] J. Oh, V. Chockalingam, S. Singh, and H. Lee, “Control of memory,
active perception, and action in minecraft,” arXiv:1605.09128, 2016.

[7] J. Choi, B.-J. Lee, and B.-T. Zhang, “Multi-focus attention network for
efficient deep reinforcement learning,” arXiv:1712.04603, 2017.

[8] Y. Niv, R. Daniel, A. Geana, S. J. Gershman, Y. C. Leong, A. Rad-
ulescu, and R. C. Wilson, “Reinforcement learning in multidimensional
environments relies on attention mechanisms,” Journal of Neuroscience,
vol. 35, no. 21, pp. 8145–8157, 2015.

[9] T. J. Buschman and E. K. Miller, “Top-down versus bottom-up control
of attention in the prefrontal and posterior parietal cortices,” science,
vol. 315, no. 5820, pp. 1860–1862, 2007.

[10] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel,
and Y. Bengio, “Show, attend and tell: Neural image caption generation
with visual attention,” in ICML, 2015, pp. 2048–2057.

[11] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv:1409.0473, 2014.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, 2017, pp. 5998–6008.

[13] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-
Barwińska, S. G. Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou
et al., “Hybrid computing using a neural network with dynamic external
memory,” Nature, vol. 538, no. 7626, p. 471, 2016.

[14] V. Zambaldi, D. Raposo, A. Santoro, V. Bapst, Y. Li, I. Babuschkin,
K. Tuyls, D. Reichert, T. Lillicrap, E. Lockhart et al., “Relational deep
reinforcement learning,” arXiv:1806.01830, 2018.

[15] J. Choi, Y. Guo, M. Moczulski, J. Oh, N. Wu, M. Norouzi, and
H. Lee, “Contingency-aware exploration in reinforcement learning,”
arXiv:1811.01483, 2018.

[16] I. Sorokin, A. Seleznev, M. Pavlov, A. Fedorov, and A. Ignateva, “Deep
attention recurrent q-network,” arXiv:1512.01693, 2015.

[17] Y. Chen, C. Dong, P. Palanisamy, P. Mudalige, K. Muelling, and J. M.
Dolan, “Attention-based hierarchical deep reinforcement learning for
lane change behaviors in autonomous driving,” in CVPR Workshops,
2019.

[18] J. Zhang, S. A. Bargal, Z. Lin, J. Brandt, X. Shen, and S. Sclaroff, “Top-
down neural attention by excitation backprop,” International Journal of
Computer Vision, vol. 126, no. 10, pp. 1084–1102, 2018.

[19] A. Sauer, N. Savinov, and A. Geiger, “Conditional affordance learning
for driving in urban environments,” arXiv:1806.06498, 2018.

[20] F. Codevilla, M. Miiller, A. López, V. Koltun, and A. Dosovitskiy, “End-
to-end driving via conditional imitation learning,” in ICRA. IEEE, 2018,
pp. 1–9.

[21] Q. Wang, J. Zhang, S. Song, and Z. Zhang, “Attentional neural network:
Feature selection using cognitive feedback,” in Advances in Neural
Information Processing Systems, 2014, pp. 2033–2041.

[22] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, and
X. Tang, “Residual attention network for image classification,” in 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
July 2017, pp. 6450–6458.

[23] Y. Chandak, G. Theocharous, J. Kostas, S. Jordan, and P. S.
Thomas, “Learning action representations for reinforcement learning,”
arXiv:1902.00183, 2019.

[24] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

[25] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, and Y. Wu, “Openai baselines,” https://github.
com/openai/baselines, 2017.

[26] L. Li, “A perspective on off-policy evaluation in reinforcement learning,”
Frontiers of Computer Science, vol. 13, no. 5, pp. 911–912, 2019.

[27] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in
Advances in neural information processing systems, 2016, pp. 4565–
4573.

[28] S. Chen, Z. Jian, Y. Huang, Y. Chen, Z. Zhou, and N. Zheng, “Au-
tonomous driving: cognitive construction and situation understanding,”
Science China Information Sciences, vol. 62, p. 81101, 2019.

[29] H. Jia, C. Ren, Y. Hu, Y. Chen, T. Lv, C. Fan, H. Tang, and J. Hao,
“Mastering basketball with deep reinforcement learning: An integrated
curriculum training approach,” in AAMAS, 2020, pp. 1872–1874.

APPENDIX

A. Hyperparameters

TABLE II: Hyperparameters for Atari experiments, where α
is linearly annealed from 1 to 0 over the course of learning.

Parameter Value

Horizon (T) 128
Learning rate 2.5× 10−4 × α
Num. epochs 4
Entropy Regularizer(β) 0.01
GAE parameter 0.95
Number of actors 8
Discount (γ) 0.99
FrameStack 4
Reward Clipping [-1,1]
Frame Skipping No
Env Randomness Random No-ops

B. Performance on Atari games.

Table III shows the mean final scores (the last 100 episodes)
of the three methods on all Atari games, and Figure 5 shows
the learning curves. Each method is trained with three different
seeds and the curves are smoothed to make the plots more
readable. Each point in Figure 5 is the average reward of
the last 100 episodes and the initial parts of the curves in
ElevatorAction are missed because the episode of this game
is very long and it costs lots of timesteps to collect the initial
100 episodes.

https://github.com/openai/baselines
https://github.com/openai/baselines

TABLE III: Mean final scores (last 100 episodes) of PPO, StateAttention and ASF on Atari games after 20M timesteps across
three trials with different seeds. The column named “Improvement-PPO” represents the improvement ratio of ASF compared
to PPO, and the column named “Improvement-SA” represents the improvement ratio of ASF compared to State Attention.

Game PPO State Attention ASF Improvement-PPO Improvement-SA

AirRaid 7417 5042.1 8318.3 12.15% 64.98%
Alien 2159.8 2235.7 2309.1 6.91% 3.28%
Amidar 1002 989.5 917.7 -8.41% -7.26%
Assault 6033.3 6049.5 6240.8 3.44% 3.16%
Asterix 6556.3 6893.5 6121.2 -6.64% -11.20%
Asteroids 2033.5 1726.4 2135.6 5.02% 23.70%
Atlantis 2818823 2790869.7 2958376.7 4.95% 6.00%
BankHeist 1252.2 1261.4 1252.2 0.00% -0.73%
BattleZone 23493.3 20983.3 18456.7 -21.44% -12.04%
BeamRider 3918.2 4139.2 4313.1 10.08% 4.20%
Berzerk 1094.6 1282.9 1360 24.25% 6.01%
Bowling 45.3 52.4 50.2 10.82% -4.20%
Boxing 95.8 96.6 96.1 0.31% -0.52%
Breakout 326.8 287.9 333.3 1.99% 15.77%
Carnival 3658.9 4206.7 4470.6 22.18% 6.27%
Centipede 4097.4 4278 4095.5 -0.05% -4.27%
CrazyClimber 119256 112149.3 114108 -4.32% 1.75%
DemonAttack 37907 20958.5 17283.4 -54.41% -17.54%
DoubleDunk -5.3 -3.9 -2 62.26% 48.72%
ElevatorAction 7854.3 7018 16914.3 115.35% 141.01%
Enduro 1095.3 1065.9 1122.9 2.52% 5.35%
FishingDerby 23.9 25.4 25.6 7.11% 0.79%
Freeway 33.2 33.7 33.5 0.90% -0.59%
Frostbite 307.6 629.6 293.6 -4.55% -53.37%
Gopher 6527.6 5547.7 6309.8 -3.34% 13.74%
Gravitar 1084.5 1035 1043.3 -3.80% 0.80%
IceHockey -4.9 -4.2 -3.9 20.41% 7.14%
Jamesbond 895.5 823 908 1.40% 10.33%
JourneyEscape -925 -716 -654.7 29.22% 8.56%
Kangaroo 9516 5836 8358.7 -12.16% 43.23%
Krull 8737.6 8550.3 8513.5 -2.56% -0.43%
KungFuMaster 28321.7 27777 31261 10.38% 12.54%
MontezumaRevenge 13.7 5.7 62.7 357.66% 1000.00%
MsPacman 2766.4 2235.6 2786.6 0.73% 24.65%
NameThisGame 6267.6 6469.8 6866.7 9.56% 6.13%
Phoenix 13217.4 13820.2 16582.8 25.46% 19.99%
Pitfall -0.8 -0.6 0 100.00% 100.00%
Pong 20.6 20.5 20.9 1.46% 1.95%
Pooyan 3301 3421.7 3268.8 -0.98% -4.47%
PrivateEye 89.4 66.9 100 11.86% 49.48%
Qbert 18506.4 20237.8 20274.7 9.56% 0.18%
Riverraid 11555.4 8594.4 11949.8 3.41% 39.04%
RoadRunner 40458.3 48938 49561 22.50% 1.27%
Robotank 18.3 18.3 16.7 -8.74% -8.74%
Seaquest 1694 1782.3 1927.7 13.80% 8.16%
Skiing -22979.6 -14647.1 -15548.7 32.34% -6.16%
Solaris 2247.2 2395.2 2310.3 2.81% -3.54%
SpaceInvaders 1601.2 1493.3 1596.2 -0.31% 6.89%
StarGunner 57001 56776.3 58680.7 2.95% 3.35%
Tennis -6.5 -8.6 -9.7 -49.23% -12.79%
TimePilot 6681.3 7275.7 7537 12.81% 3.59%
Tutankham 207.8 221.5 255.2 22.81% 15.21%
UpNDown 205443.2 191766.9 179574.9 -12.59% -6.36%
Venture 149 0 0 -100.00% 0.00%
VideoPinball 78672.5 53752.7 78666.8 -0.01% 46.35%
WizardOfWor 6617.7 6248.3 6095.7 -7.89% -2.44%
YarsRevenge 15850.1 23078.7 22092.8 39.39% -4.27%
Zaxxon 10305.7 10307.7 11301.7 9.66% 9.64%
Average Improvement Ratio - - - 12.57% 27.63%

Fig. 5: Learning curves of PPO, State Attention and ASF on Atari games after 20M timesteps. The error bands are computed
based on three trials with different seeds.

